
HAL Id: hal-02899363
https://amu.hal.science/hal-02899363

Submitted on 15 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Frozen Zoo: a collection of permafrost samples
containing viable protists and their viruses

Stas Malavin, Lyubov Shmakova, Jean-Michel Claverie, Elizaveta Rivkina

To cite this version:
Stas Malavin, Lyubov Shmakova, Jean-Michel Claverie, Elizaveta Rivkina. Frozen Zoo: a collection
of permafrost samples containing viable protists and their viruses. Biodiversity Data Journal, 2020,
8, �10.3897/BDJ.8.e51586�. �hal-02899363�

https://amu.hal.science/hal-02899363
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Biodiversity Data Journal 8: e51586

doi: 10.3897/BDJ.8.e51586 

Data Paper 

Frozen Zoo: a collection of permafrost samples

containing viable protists and their viruses

Stas Malavin , Lyubov Shmakova , Jean-Michel Claverie , Elizaveta Rivkina

‡ Soil Cryology Lab, Institute of Physicochemical and Biological Problems in Soil Science RAS, Pushchino, Russia

§ Aix-Marseille University, CNRS, IGS (UMR7256), IMM (FR3479), Marseille, France

Corresponding author: Stas Malavin (stas.malavin@issp.psn.ru) 

Academic editor: Anna Maria Fiore-Donno

Received: 28 Feb 2020 | Accepted: 03 Jul 2020 | Published: 10 Jul 2020

Citation: Malavin S, Shmakova L, Claverie J-M, Rivkina E (2020) Frozen Zoo: a collection of permafrost samples

containing viable protists and their viruses. Biodiversity Data Journal 8: e51586. 

https://doi.org/10.3897/BDJ.8.e51586 

Abstract

Background

Permafrost, frozen ground cemented with ice, occupies about a quarter of the Earth’s hard

surface and reaches up to 1000 metres depth. Due to constant subzero temperatures,

permafrost represents a unique record of past epochs, whenever it comes to accumulated

methane, oxygen isotope ratio or stored mummies of animals. Permafrost is also a unique

environment where cryptobiotic stages of different microorganisms are trapped and stored

alive for up to hundreds of thousands of years. Several protist strains and two giant protist

viruses isolated from permafrost cores have been already described.

New information

In this paper, we describe a collection of 35 amoeboid protist  strains isolated from the

samples of Holocene and Pleistocene permanently frozen sediments. These samples are

stored at −18°C in the Soil Cryology Lab, Pushchino, Russia and may be used for further

studies and isolation attempts. The collection strains are maintained in liquid media and

may be available upon request. The paper also presents a dataset which consists of a

table describing the samples and their properties (termed "Sampling events") and a table
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describing the isolated strains (termed "Occurrences"). The dataset is publicly available

through the GBIF portal.
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Introduction

Permafrost, or perennially frozen ground, is the ground that remains below zero degrees

Celsius for two or more consecutive years (Goudie 2004, p. 777). In North-Eastern Siberia,

the age of the permafrost may reach millions of years and span 1 km below the surface of

the ground (Gilichinsky and Rivkina 2011). In this ancient permafrost, viable prokaryotic

and eukaryotic organisms have been found (Rivkina et al. 2007, Gilichinsky et al. 2008,

Ozerskaya et  al.  2009,  Shatilovich et  al.  2009,  Vishnivetskaya 2009,  Jansson and Taş

2014, Shatilovich et al. 2015, Shmakova and Rivkina 2015, Shcherbakova et al. 2016). In

the case of syncryogenetic formation, i.e. simultaneous sedimentation and freezing, the

age of deposition of  all  particles in a layer is approximately the same (Gilichinsky and

Rivkina 2011).  Thus,  by observing sterile  conditions during all  stages of  sampling and

cultivation, it is possible to date isolated microorganisms by the age of the sediments.

The sediments, from which living microorganisms have been successfully isolated, date

back to a million years BP. These strains are of great scientific interest for several reasons.

First, this is a remarkable case of the organism's hardiness, far exceeding the traditional

view on how long an organism can survive, even in the suspended stage of the life cycle.

Although subzero temperatures down to −50°C are not incompatible with certain metabolic

reactions in bacteria (Rivkina et al. 2000, Bakermans et al. 2003, Price and Sowers 2004,

Johnson et al. 2007, Rohde et al. 2008), including even DNA replication (Tuorto et al.

2014),  the  main  factor  limiting  the  metabolism  in  permafrost  deposits  is  the  lack  of

sufficient  amount  of  liquid  water  (Rivkina  et  al.  2000).  Concerning  the  spore-forming

bacteria  and cyst-forming protists  (to  which 100% of  protists  reported from permafrost

belong), those are likely to remain in these deposits in a state of cryptobiosis, or “hidden

life”, which involves certain biochemical adaptations to endure adverse factors. Second, as

cysts do not replicate, protists trapped in the permafrost are therefore excluded from the

evolutionary  process.  Thus,  the  comparison  of  closely  related  strains  isolated  from

sediments of different age and modern soils may allow the study of evolutionary changes

that have happened since the time of sedimentation. Finally, strains from permafrost are

the remnants of  the ancient  ecosystems that  have disappeared.  During the thawing of

permafrost  on  outcrops  along  the  banks  of  rivers  and  seas,  organisms  from  ancient

sediments  are  likely  to  penetrate  into  modern  ecosystems  with  not  totally  understood

consequences (Gubin et al. 2003, Graham et al. 2012).

Amoeboid protists, a polyphyletic group of eukaryotic, mostly unicellular, microorganisms

with inconstant cell shape, are an important component of all soil ecosystems (e.g. Geisen
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et al.  2018).  They primarily feed on bacteria and other protists,  but can also consume

dissolved organic substances (Stockem and Klein 1979). Amoeboid protists are absolutely

ubiquitous,  with  many  genera  characterised  by  worldwide  distribution  (e.g.  Smith  and

Wilkinson 2007). To date, we have isolated about 40 strains of amoeboid protists, mostly

from  Amoebozoa  and  Heterolobosea,  from  permafrost  samples.  We  have  also

encountered amoeboflagellates from the Cercozoa supergroup, but have not isolated them

due to time and resources limits. Shatilovich et al. (2010) also reported cercozoans from

nesting  chambers  of  the  ground  squirrel  (Urocitellus sp.)  burrows  found  frozen  in

permafrost.  In our isolation experiments, only about 5% of samples yielded live strains

(compared to the usual 100% of modern soil  samples),  so such isolation constitutes a

relatively  rare  event.  The samples,  from which the strains  have been isolated,  remain

frozen  and  further  isolation  from  them  is  possible,  as  shown  by  our  experiments.

Additionally,  this makes possible some direct  environmental  measurements—a property

rarely  represented in  microbiological  collections—as well  as the analysis  of  total  DNA,

either  by  metabarcoding  or  metagenomics.  Some data  on  prokaryotic  microorganisms

obtained by shotgun metagenomics from permafrost samples are published by Rivkina et

al. (2016).

The data on the taxonomic composition of amoeboid protists in the Arctic and Antarctic are

scarce compared to the better-studied temperate areas. Brown et al. (1982) have found

amoebae  from  the  genera  Acanthamoeba,  Hartmanella,  Platyamoeba,  Naegleria and

Vahlkampfia in  the  Antarctic.  Smith  (1982)  discovered  Phalansterium,  Mayorella, 

Metachaos,  Vanella,  Vexillifera,  Tetramitus,  Naegleria,  Vahlkampfia and  10  genera  of

testate  amoebae in  the  Sub-Antarctic  island  of  South-Georgia.  Notably,  a  first  solitary

species  of  Phalansterium,  P. solitarium,  was  described  from Svalbard  (Sandon  1924).

Several  strains of  heterolobose amoebae from both the Antarctic and Arctic soils have

been described since then (De Jonckheere 2006, Robinson et al. 2007, Tyml et al. 2016).

However, more attention has been paid to the testate taxa due to their role as markers in

bioindication  and paleoenvironmental  reconstruction  (Beyens et  al.  1986,  Vincke et  al.

2004, Tsyganov et al. 2011, Taylor et al. 2019). Antarctic fauna have been studied better

than the fauna of the Arctic, with even a checklist published recently (Thompson et al.

2019). Concerning Northern Siberia, the available data are almost exclusively limited to

testate amoebae (Beyens and Chardez 1995, Smith et al.  2007, Bobrov and Wetterich

2012, Shmakova et al. 2013). Our collection therefore contributes to the study of Arctic

fauna of amoeboid protists.

The finding of live protists in the permafrost layers up to hundreds of thousands years old

significantly  expands  our  view  on  the  survival  capabilities  of  eukaryotes  and  raises

questions  about  the  mechanisms  that  make  this  survival  possible.  Despite  intensive

research during the last 40 years, our understanding of these mechanisms in unicellular

organisms is still far from completion Bernhard et al. 2010, Anderson 2016, Souffreau et al.

2019. Permafrost presents us with the results of a monumental experiment impossible to

set up in the laboratory; and the collection we describe allows us to study these results in

any  detail.  Moreover,  strains  isolated  from  permafrost  constitute  the  remains  of  a

disappeared  ecosystem.  This,  first,  allows  us  to  study  the  taxonomic  and  functional
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diversity of that ecosystem and, second, to compare the isolated "ancient" strains with their

modern relatives at any desired level to study the evolution Shmakova et al. 2016.

An interesting peculiarity about the described samples is the isolation of two new giant

double-stranded DNA viruses from one of them (Legendre et al.  2014, Legendre et al.

2015). Giant viruses were so-called because they are visible by light microscopy, but they

also have the largest genome sizes and gene contents known amongst viruses. Amongst

those genes are transfer RNA genes, translation initiation factor genes and other remnants

of translation machinery that are not recent transfers from cellular organisms. The giant

viruses isolated from permafrost samples, Mollivirus sibericum and Pithovirus sibericum,

presumably  represent  new giant  virus  families  (Legendre  et  al.  2014,  Legendre  et  al.

2015).

Sampling methods

Study extent: The samples were collected in the field and stored constantly frozen during

all periods of transportation and processing. In the lab, a part of each sample was used to

isolate protist strains. The remaining part has never been melted and is stored at −18°C.

The  isolation  was  done  in  sterile  conditions.  Revived  protists  were  cloned  and  are

maintained as bacterised or axenic cultures on plastic or agar with liquid overlay.

Sampling  description: Drilling  was  performed  using  a  mobile  drilling  rig  (core-drilling

machine) UKB-12/25 (V.V. Vorovsky Machine-Building Plant,  Moscow, Russia) operated

without  flushing  and  blowing (Fig.  1a).  Flushing  and  blowing  were  shown  to  cause

contamination of the cores by modern soil microorganisms (Gilichinskiy et al. 1989). Each

core was collected every 30–70 cm of the drilling. The core diameters were 115 to 75 mm,

depending on the well depth (the deeper the well, the smaller the core). Removed cores

were  wrapped in  a  one-centimetre-thick  coat  of  half-melted  cuttings.  Immediately  after

collection, this coat was removed with a knife, showing a completely frozen inner part. After

a short lithological and glaciological description of the sediments, each core was passed to

a clean field lab organised in a tent. Operations in the lab were conducted behind a gas-

fired  burner  using  disposable  materials  and  gloves,  following  general  microbiological

practice. In the lab, the core was shaved with a sterile scalpel so that a 5 mm outer layer

was removed. The remaining core was 4-6 cm in diameter, depending on the initial value.

Immediately after shaving, the core was placed into a sterile sampling bag (Fig. 2) and

placed in a portable freezer, a cave dug into an ice wedge or an empty borehole used as a

freezer.  In  total,  the  “outdoor”  stage  of  the  process  lasted  no  more  than  10  minutes,

depending on the current well depth. The “indoor” lab stage took around 5 minutes. All

collected  cores  were  kept  at  negative  temperatures  during  the  whole  period  of

transportation to the stationary lab.

Outcrops are natural exposures of permafrost sediments formed at sea and river banks.

The advantage of sampling from the outcrop wall is the possibility of visual inspection and

description of the whole sediment layer, including preserved soils (Fig. 3a). Samples from

outcrops were taken from the frozen surface of the outcrop wall after the removal of melted
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material. In the wall, a hole of about 40 cm deep was made with either a hand-held drill

(Fig. 1b), a chisel or a knife. A cylinder sample about 5 cm in diameter was carefully carved

or drilled out from the bottom of the hole, treated with 95% ethanol and immediately placed

into a sterile plastic bag (Fig. 2). As with the cores, all collected outcrop samples were kept

frozen during the whole period of transportation.

a b

 

Figure 1. 

Drilling equipment used for sampling permafrost sediments.

a: Mobile drilling rig (vertical coring). 

b: Hand drill (wall sampling). 
 

 

Figure 2.  

Core samples in sterile bags.
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Buried terminal nesting chambers of ground squirrel (Urocitellus sp.) burrows (Fig. 3b) are

unique paleontological objects of Pleistocene Ice Complex sediments. They usually contain

animal supplies made of seeds of surrounding grasses. Usually frozen in the living state,

they are very well preserved. From the tissue of a Silene sp. seed found in a buried nesting

chamber, a viable flowering plant was grown (Yashina et al. 2012). Nesting chambers also

contain a diverse community of protists and fungi. Chambers were cut from the outcrop

 

a

 

b

Figure 3. 

Late Pleistocene fossil objects on yedoma outcrops sampled for viable protist strains.

a: Buried Late Pleistocene soil (paleosol) at the Duvannyy Yar outcrop (Sakha Rep.). 

b: Buried terminal nesting chamber of a ground squirrel burrow. Note the supply of seeds.

Duvannyy Yar. 
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wall in one or several pieces, each 10 or more cm in dimension, put immediately in sterile

plastic bags and kept frozen until processing in the lab.

Quality  control: During  the  development  of  the  permafrost  microbiological  sampling

technique, several tests for contamination of the core interior were established at different

phases of sampling and storage. Gilichinskiy et al. (1989) and Shi et al. (1997) used a

bacterium,  Serratia marcescens,  which  produces  easily  noticeable  red  colonies.  The

drilling barrel  was covered with a culture suspension 2 h prior  to  drilling.  In  a parallel

experiment, frozen samples were seeded with the same suspension in the lab and left

intact at negative temperature for several hours to several months. The distribution of S. 

marcescens cells  in  a  core  was  investigated  during  sample processing.  In  both  tests,

bacteria have been found exclusively in the outer layer and never inside the core.

Later, Juck et al. (2005) used fluorescent latex beads (microspheres), 0.5 μm in diameter

and a transformed Pseudomonas strain expressing green fluorescent protein (GFP). Both

beads  and  transformed bacteria  were  applied  to  the  drilling equipment  before  drilling,

similarly  as  described  above for  S. marcescens suspension.  Fluorescence microscopy

showed that neither beads nor bacteria penetrate a sample more than 1 cm below the

surface. Additionally, polymerase chain reaction revealed no amplification of the GFP gene

from the inner part of the cores.

Based on the negative results obtained for bacteria and fluorescent beads, i.e. particles

around 2 μm in diameter or less, we consider that protist cysts, which are at least five times

larger,  cannot  move inside the frozen ground and thus could  not  have penetrated the

sediments much later than they were deposited. In the same way, the contamination of the

inner part of the samples during sampling and laboratory processing is highly unlikely.

Geographic coverage

Description: The samples were obtained from three areas in High Eurasian Arctic, i.e. the

Gydan Peninsula, the Bykovskiy Peninsula and the Kolyma Lowland (Fig. 4). Locations of

the  sampling  sites  are  present  in  Table  1  (entries  in  the  "Parent  event  id"  column

correspond to the labels in Fig. 4).

Sampling

event id

Parent

event id

Year of

collection

Locality Locality link Latitude Longitude Depth

below

surface,

m

D-01/01-2.2 D-01/01 2001 Bykovskiy

Peninsula

geonames.org/

2025770

71.783284 129.3611761 2.16

Table 1. 

Characteristics of samples used in the study
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Sampling

event id

Parent

event id

Year of

collection

Locality Locality link Latitude Longitude Depth

below

surface,

m

D-07/03-5.0 D-07/03 2003 Bykovskiy

Peninsula

geonames.org/

2025770

71.775537 129.330297 5

D-05/13-2.5 D-05/13 2013 Ngarka-Khortiyakha

River flood land,

800 m from the

mouth, 100 m from

the bank

geonames.org/

1497773

71.463875 76.992927 2.5

D-05/13-5.0 D-05/13 2013 Ngarka-Khortiyakha

River flood land,

800 m from the

mouth, 100 m from

the bank

geonames.org/

1497773

71.463875 76.992927 5

D-05/13-6.0 D-05/13 2013 Ngarka-Khortiyakha

River flood land,

800 m from the

mouth, 100 m from

the bank

geonames.org/

1497773

71.463875 76.992927 6

D-04/13-2.5 D-04/13 2013 Southeast of the

Yayne-Vonga Bay,

low terrace

separated from the

sea by laida

geonames.org/

1545199

72.348887 78.546807 2.5

D-04/13-3.5 D-04/13 2013 Southeast of the

Yayne-Vonga Bay,

low terrace

separated from the

sea by laida

geonames.org/

1545199

72.348887 78.546807 3.5

D-01/13-2.0 D-01/13 2013 West of Lake

Tirebyato, 10 m

from the terrace cliff

geonames.org/

1544900

72.350733 75.118445 2

D-01/13-4.0 D-01/13 2013 West of Lake

Tirebyato, 10 m

from the terrace cliff

geonames.org/

1544900

72.350733 75.118445 4

D-01/13-8.0 D-01/13 2013 West of Lake

Tirebyato, 10 m

from the terrace cliff

geonames.org/

1544900

72.350733 75.118445 8
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Sampling

event id

Parent

event id

Year of

collection

Locality Locality link Latitude Longitude Depth

below

surface,

m

D-03/13-1.0 D-03/13 2013 Southeast of the

Yayne-Vonga Bay,

laida rear welt

geonames.org/

1545199

71.429709 72.991683 1

D-07/13-2.0 D-07/13 2013 Mongocheyakha

River Mouth

geonames.org/

1498452

N/D N/D 2

D-03/15-3.5 D-03/15 2015 Alazeya River geonames.org/

2127297

69.3388694 154.9969472 3.5

D-03/15-14.2 D-03/15 2015 Alazeya River geonames.org/

2127297

69.3388694 154.9969472 14.2

P-1084T P-1084 2000 Kolyma River,

Stanchikovskiy Yar

geonames.org/

12123736

68.370155 161.415553 N/A

P-1086AT2 P-1086 2000 Kolyma River,

Stanchikovskiy Yar

geonames.org/

12123736

68.370155 161.415553 N/A

P-318-08-69a P-318-08 2008 Kolyma River,

Duvannyy Yar

geonames.org/

12123735

68.628232 159.194842 N/A

C-02/19-1 C-02/19 2019 Kolyma River,

Duvannyy Yar

geonames.org/

12123735

68.635026 159.07798 N/A

B-34/19 B-34/19 2019 Kolyma River,

Duvannyy Yar

geonames.org/

12123735

68.630072 159.153383 N/A

Taxonomic coverage

Description: We isolated protists from permafrost samples using enrichment cultivation.

Specifically, three portions of ca. 1 cm  from the inner part of each frozen sample were

placed into 90-mm Petri dishes filled with 10 ml autoclaved mineral Prescott and James

(PJ) medium (Prescott and James 1955). Negative controls, i.e. same procedures without

sample inoculate, were set up simultaneously. The isolation was performed in a laminar

flow hood using disposable or sterilised equipment. After incubation of one week, samples

were examined using a Nikon TS-100 inverted microscope. Detected cells were cloned by

transferring  them  individually  to  a  new  dish  using  a  disposable  glass  capillary  and

subsequently re-cloned several times. The resulting strains were cultured in 60 mm Petri

dishes using modified 0.1% Cerophyl infusion made on PJ medium (Smirnov and Brown

2004).

3
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Preliminarily,  we identified  isolated strains  to  the lowest  possible  level  using keys and

diagrams as in  Smirnov and Brown 2004,  Patterson 2003,  Page 1988.  Branching and

network-forming amoebae (BNFA) were not identified to any level. Further study of certain

strains involved electron microscopy and molecular phylogeny (referenced in Table 2). In

total, we isolated 34 strains belonging to Amoebozoa and Heterolobosea and one testate

strain belonging to Cercozoa. Cercozoan amoeboflagellates were observed in enrichment

cultures, but were not isolated due to time and resource limits. Higher taxonomy (following

Adl et al. 2018), source of identification, location of sampling and the estimated age of the

isolated protist strains and viruses are presented in Table 2. Age estimation is detailed

below in the "Age of the isolated strains" section.

Strain Identification Identification

basis

Sample Location Geological

epoch

Estimated

age, Kyr

Description

reference

GenBank

accession

number

(SSU)

Amoebozoa 

Discosea 

SCL-am7 Acanthamoeba

sp.

LM D-01/01-2.2 Bykovskiy

Pen.

Late

Pleistocene

12–28

SCL-am8 Acanthamoeba

sp.

LM, M P-1086AT2 Kolyma

Lowland

Late

Pleistocene

34–37 Malavin

and

Shmakova

2020a

MK124583

SCL-am9 Acanthamoeba

sp.

LM, M D-07/03-5.0 Bykovskiy

Pen.

Late

Pleistocene

28–48 MK124584

 
Figure 4.  

Location of sampling events. North-Eastern Eurasia.

 

Table 2. 

Strains of the described collection. LM—Light microscopy; TEM—Transmitted electron microscopy;

SEM—scanning electron microscopy; M—Molecular phylogeny; Kyr—thousands of years.
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Strain Identification Identification

basis

Sample Location Geological

epoch

Estimated

age, Kyr

Description

reference

GenBank

accession

number

(SSU)

SCL-14-2 Acanthamoeba

sp.

LM, M D-05/13-5.0 Gydan

Pen.

Holocene MK124585

SCL-14-3 Acanthamoeba

sp.

LM, M D-04/13-3.5 Gydan

Pen.

Late

Pleistocene

~30 MK124586

SCL-14-9 Acanthamoeba

sp.

LM, M D-05/13-6.0 Gydan

Pen.

Late

Pleistocene

MK124587

SCL-14-12 Acanthamoeba

sp.

LM, M P-1084T Kolyma

Lowland

Late

Pleistocene

34–37 MK124588

SCL-19-2 Acanthamoeba

sp.

LM C-02/19-1 Kolyma

Lowland

Late

Pleistocene

42–43

SCL-16-1 Cochliopodium

sp.

LM D-03/15-3.5 Kolyma

Lowland

Late

Pleistocene

SCL-16-3 Vannella sp. LM D-03/15-3.5 Kolyma

Lowland

Late

Pleistocene

SCL-15-5 Amoebozoa

indet.

LM D-03/15-14.2 Kolyma

Lowland

Middle

Pleistocene

600–

1000

SCL-14-10 Amoebozoa

indet.

LM D-05/13-2.5 Gydan

Pen.

Holocene

SCL-19-3 Amoebozoa

indet.

LM C-02/19-1 Kolyma

Lowland

Late

Pleistocene

42–43

Evosea: Variosea 

SCL-flam1 Flamella

pleistocenica

Shmakova et

al., 2016

LM, TEM, M P-318-08-69a Kolyma

Lowland

Late

Pleistocene

42–43 Shmakova

et al. 2016

KP208180

SCL-flam2 Flamella

beringiania

Shmakova et

al., 2016

LM, TEM, M P-1084T Kolyma

Lowland

Late

Pleistocene

34–37 KP219428

SCL-flam3 Flamella

beringiania

Shmakova et

al., 2016

LM, TEM, M D-04/13-3.5 Gydan

Pen.

Late

Pleistocene

~30 KP219429
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Strain Identification Identification

basis

Sample Location Geological

epoch

Estimated

age, Kyr

Description

reference

GenBank

accession

number

(SSU)

SCL-flam4 Flamella

beringiania

Shmakova et

al., 2016

LM, TEM, M D-05/13-5.0 Gydan

Pen.

Holocene KP219430

SCL-flam5 Flamella

pleistocenica

Shmakova et

al., 2016

LM, TEM, M D-05/13-2.5 Gydan

Pen.

Holocene KP219431

SCL-flam6 Flamella

beringiania

Shmakova et

al., 2016

LM, TEM, M D-01/13-4.0 Gydan

Pen.

Holocene KP219432

SCL-flam9 Flamella sp. LM D-03/15-3.5 Kolyma

Lowland

Late

Pleistocene

SCL-19-1 Flamella sp. LM C-02/19-1 Kolyma

Lowland

Late

Pleistocene

42–43

SCL-19-8 Flamella sp. LM B-34/19 Kolyma

Lowland

Late

Pleistocene

42–43

SCL-14-8 Filamoeba sp. LM D-01/13-8.0 Gydan

Pen.

Late

Pleistocene

15–17

SCL-Parc Phalansterium

arcticum

Shmakova et

al., 2018

LM, TEM, M D-01/13-2.0 Gydan

Pen.

Holocene 8.6 Shmakova

et al. 2018

KX844828

SCL-14-1 BNFA LM D-05/13-2.5 Gydan

Pen.

Holocene

SCL-14-4 BNFA LM D-05/13-6.0 Gydan

Pen.

Late

Pleistocene

SCL-14-6 BNFA LM D-03/13-1.0 Gydan

Pen.

Holocene?

SCL-14-7 BNFA LM D-07/13-2.0 Gydan

Pen.

Holocene?

SCL-14-11 BNFA LM D-04/13-2.5 Gydan

Pen.

Late

Pleistocene
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Strain Identification Identification

basis

Sample Location Geological

epoch

Estimated

age, Kyr

Description

reference

GenBank

accession

number

(SSU)

SCL-16-4 BNFA LM D-03/15-3.5 Kolyma

Lowland

Late

Pleistocene

SCL-16-5 BNFA LM D-03/15-3.5 Kolyma

Lowland

Late

Pleistocene

Heterolobosea 

SCL-16-2 Heterolobosea

indet.

LM D-03/15-3.5 Kolyma

Lowland

Late

Pleistocene

SCL-16-8 Heterolobosea

indet.

LM D-03/15-3.5 Kolyma

Lowland

Late

Pleistocene

SCL-16-9 Heterolobosea

indet.

LM D-03/15-3.5 Kolyma

Lowland

Late

Pleistocene

Rhizaria 

SCL-16-6 Lecythium sp. LM D-03/15-3.5 Kolyma

Lowland

Late

Pleistocene

Viruses 

Pithovirus 

sibericum 

TEM, SEM,

M

P-1084T Kolyma

Lowland

Late

Pleistocene

34–37 Legendre

et al. 2014

NC023423

Mollivirus 

sibericum 

TEM, SEM,

M

P-1084T Kolyma

Lowland

Late

Pleistocene

34–37 Legendre

et al. 2015

NC027867

For the isolation of viruses, 400 mg of the sample were resuspended in 6 ml of PJ. Each 3

ml were supplemented with 300 μl of Amphotericin B (Fungizone) at 250 μg/ml. A volume

of 1.65 ml of this solution was left overnight under stirring at 4°C. After decantation, the

supernatant  was centrifuged at  800×g for  5  min.  Acanthamoeba castellanii strain  Neff

(ATCC 30010™) culture adapted to Fungizone was inoculated with 100 μl supernatant and

with  the  pellet  resuspended  in  50  μ  buffer  (Tris  20  mM,  CaCl  21  mM,  pH  7.4).

Acanthamoeba cells were cultured at 32°C in microplates with 1 ml of PPYG medium (Neff

et al. 1964) supplemented with 100 μg/ml of ampicillin, 100 μg/ml of penicillin-streptomycin

and 2.5 μg/ml of Fungizone and monitored for cell lysis. Virion factories inside host cells

were visualised using TEM. Infection trials were performed twice and produced identical

results (Legendre et al. 2014, Legendre et al. 2015).

When the cell lysis was completed, cultures were centrifuged for 5 min at 500×g to remove

cellular debris and virus particles were pelleted by a 30-min centrifugation at 3,000×g. The

pellet  was  then  washed  twice  in  PBS  and  centrifuged  at  5,000×g  for  15  min  on  a

discontinuous sucrose gradient (30%/40%/50%/60% wt/vol). Purified particles were studied
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by scanning electron microscopy. Genomic DNA was recovered from 1.8 × 10  purified

particles and sequenced in paired-end flow cell on the Illumina MiSeq system using 151

base  read  chemistry.  Viruses  were  identified  and  described  based  on  their  genome

sequences,  SEM of  the  virion  morphology  and  TEM of  the  virion  factory  morphology

(Legendre et al. 2014, Legendre et al. 2015).

Traits coverage

Age of the isolated strains. The specific property of the described collection is that its

strains are of ancient, mostly Pleistocene, origin and represent a part of a disappeared

ecosystem. Due to the small number of cells in the frozen sediments, it is not possible to

date these cells directly, thus an indirect method is needed. In the case of syncryogenetic

formation,  when  freezing  of  the  sediments  occurs  together  with  their  deposition,  all

particles,  including  bacterial  and  fungal  spores  and  protist  cysts,  become  frozen  at

approximately the same time. If frozen deposits have not melted, which may be inferred

from cryotexture, distribution of methane or other signatures, no particles of bacterial size

or larger could have penetrated from the surface. Thus, one could assume the age of the

cells trapped in permafrost to be roughly the same as the age of the permafrost itself or, in

other words, that the found cells originate from the time of the last sediment freezing. This

time may be determined by radiocarbon ( C) dating of carbon-containing remnants and

substances produced by the biota before sedimentation-freezing occurred.

Gydan Peninsula. Based on radiocarbon and optically-stimulated luminescence (OSL)

dating,  sediments  associated with  massive ice  formations  in  the  Gydan Peninsula  are

considered to be of the Late Pleistocene estuarine-alluvial origin (Mahaney et al. 1995).

However,  Holocene  formations  are  also  present  (Demidov  et  al.  2016).  For  instance,

radiocarbon dating of the sample D-01/13-2.0 from 2 m depth of the borehole D-01/13

gave  8580  ±  50  years  BP (Demidov  et  al.  2016).  From the  same borehole,  samples

collected at 6 and 10 m gave, correspondingly, 17000 ± 55 and 15000 ± 50 years BP. Such

reversion is usually encountered in geochronological studies. It may be attributed to either

the vertical transfer of substance, which in the case of syncryogenetic sedimentation does

not occur, or to the different proportion of carbon sources, which differ in age considerably,

sometimes  by  several  thousand  years  (Brock  et  al.  2010).  Thus,  we  consider  the

sediments  of  the  sample  D-01/13-8.0  (8  m)  to  be  15  to  17  thousand years  old  (Late

Pleistocene). Sample D-01/13-4.0 (4 m), by its chemical composition and methane content,

was closer to the sample taken at 2 m than to that taken at 6 m (Demidov et al. 2016).

Therefore, despite the lack of a well-defined border between the Holocene and Pleistocene

deposits revealed by this borehole, we presume the Holocene origin for this sample.

The borehole D-04/13 was drilled on a low sea terrace and, below the thin cover layer,

penetrates the Late Pleistocene sediments. At 4 m, these sediments were radiocarbon-

dated to 34300 ± 1200 years BP (Demidov et al. 2016). The sample D-04/13-3.5 collected

at  3.5  m is  thus  not  less  than  30  thousand years  old,  assuming  approximately  equal

sedimentation rate across the area during the Late Pleistocene. Following the same logic,
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the  sediments  of  the  sample  D-04/13-2.5  (2.5  m)  were  also  deposited  in  the  Late

Pleistocene.

Sediments  penetrated  by  the  borehole  D-05/13  split  into  two  benches,  with  a  border

located between 5 and 6 m. The upper bench is considered to be of the Holocene origin,

while  the  lower  formed during  the  Late  Pleistocene (Demidov  et  al.  2016).  Therefore,

strains isolated from the samples D-05/13-2.5 and D-05/13-5.0 (2.5,  5 m, respectively)

originate from the Holocene and D-05/13-6.0 (6 m) from the Late Pleistocene. The origin of

sediments  of  the  samples  D-03/13-1.0  and  D-07/13-2.0  cannot  be  determined  with

certainty, but the depth at which these samples were collected argues for the Holocene

(Demidov et al. 2016).

Bykovskiy  Peninsula. The  Bykovskiy  Peninsula  harbours  the  most  studied  Late

Pleistocene deposits in Siberia, called the Yedoma suite (Schirrmeister et al. 2011, Rivkina

et al. 2006, Schirrmeister et al. 2002). Yedoma is formed by ice-rich loams, silts and silty

sands  penetrated  by  large  ice  wedges,  resulting  from synchronous  sedimentation  and

freezing driven by certain climatic and environmental conditions (Schirrmeister et al. 2011,

Murton et  al.  2015).  The boreholes D-01/01 and D-07/03 (outcrop Mamontova Hayata)

yielded cores of Pleistocene loam from the very first metres, with D-07/03 penetrated into,

supposedly, Pliocene sands (Rivkina et al. 2006). The sample D-01/01-2.2 (2.2 m), by the

depth at which it was collected, corresponds to the unit C of Schirrmeister et al. (2002)

dated 12 to 28 thousand years BP. The sample D-07/03-5.0 (5.0 m) corresponds to the unit

B with the age 28–48 thousand years (Schirrmeister et al. 2002).

Kolyma  Lowland. In  this  area,  the  Late  Pleistocene  Yedoma  suite  is  also  widely

distributed. Samples C-02/19-1, B-34/19 and P-318-08-69a were taken from the Duvannyy

Yar exposure on the Kolyma River, in its lowermost part (5–12 m above the river level). The

sampled sediments were silty  and sandy loams with numerous inclusions of  roots and

branches  of  shrubs  which  correspond to  the  allochthonous peat  layer  dated  42  to  43

thousand years (Gubin and Zanina 2013). Samples P-1084T and P-1086AT2 were taken at

a similar outcrop of Stanchikovskiy Yar, located in about 100 km from Duvannyy Yar, at

Malyy Anyuy River, a tributary of Kolyma. Radiocarbon dating of the sediment layer from

which the samples were collected gave 34 to  37 thousand years BP (Legendre et  al.

2014).  A considerable part  of  the collection came from borehole D-03/15 drilled in  the

vicinity of the Allazeya riverbank, approximately in the same place as borehole 15/91 of

Rivkina et al. (2006). Almost all core fragments that yielded live protists originate from the

Late Pleistocene Yedoma suite, with the deepest one (14.2 m) attributed to the Olyor suite

(600–1000 thousand years BP) (Rivkina et al. 2006).
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Usage rights

Use license:  Other

IP  rights  notes:  The GBIF  dataset  "Amoeboid  protists  isolated  from ancient  Siberian

permafrost"  (Malavin  and  Shmakova  2020b)  is  licensed  under  a  Creative  Commons

Attribution Non-Commercial (CC-BY-NC) 4.0 License.

Usage of strains from the collection: The protist strains from the collection are freely

available  for  non-commercial  use  upon  request  to  Pushchino  Scientific  Center  for

Biological Research RAS. The distribution of strains used in the ongoing research projects

will be discussed on an individual basis. The purpose of the strain usage must be stated

explicitly and may be made public. Strains may not be passed to a third person without the

official permission of the rights holder. The collection must be clearly referenced as the

source of the strain while in public use.

Data resources

Data package title:  Amoeboid protists isolated from ancient Siberian permafrost

Resource link:  https://www.gbif.org/dataset/e11d99cb-4a96-4e9d-847e-d078cfd59f6c 

Alternative identifiers:  https://doi.org/10.15468/mfnrdv 

Number of data sets:  3

Data set name: event.txt

Character set: UTF-8

Data format: Tab-delimited values

Description: Sampling  events  (i.e.  boreholes,  wall  sampling,  borrow  samples)  with

linked occurrences (i.e. clonal cultures isolated from the samples obtained)

Column label Column description

id Sample id

dynamicProperties Sample type in Darwin Core json format

eventID Same as "id"

parentEventID Parent event— usually a borehole

samplingProtocol Sampling protocol

eventDate Date (year) of sampling

fieldNumber Field tag of the sample

eventRemarks Sample description made by a collector
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locationID A link to a location of sampling at geonames.org

higherGeography Higher geography of the sampling site

continent Always "Asia"

country Always "Russia"

countryCode Country code

locality Sampling locality

minimumDepthInMetres The beginning depth of the core (if applicable)

maximumDepthInMetres The ending depth of the core (if applicable)

decimalLatitude Decimal latitude

decimalLongitude Decimal longitude

geodeticDatum Geodetic datum (always EPSG:4326)

georeferencedBy Collector

georeferencedDate Same as eventDate

earliestEpochOrLowestSeries Earliest estimated epoch of deposit formation

latestEpochOrHighestSeries Latest estimated epoch of deposit formation

lithostratigraphicTerms Lithostratigraphic terms

Data set name: occurrence.txt

Character set: UTF-8

Data format: Tab-delimited values

Description: Characteristics of the isolated strains

Column label Column description

id Sample ID

type Always "Collection"

language Always "en"

rightsHolder The rights holder, always "Pushchino Scientific Center for Biological Research RAS"

accessRights Always "not-for-profit use only"

collectionCode Always "SCL"

ownerInstitutionCode Always "PSCBR"

basisOfRecord Always"MaterialSample"

occurrenceID Strain ID
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catalogNumber The same

disposition "in collection" or "missing"

associatedReferences Publications where the strain was described

associatedSequences Publicly available sequences of the strain

organismScope Always "clonal culture"

organismRemarks Strain maintainance

eventID Sample ID

eventDate Collection date (year)

identifiedBy By whom the strains was identified

identificationReferences Resources used for identification

typeStatus Type status of the strain

scientificName Nearest possible identification following the GBIF taxonomy

scientificName Always "Protozoa" (GBIF taxonomy)

taxonRank Rank of the nearest identified taxon

nomenclaturalCode Always "ICZN"

Data set name: extendedmeasurementsorfacts.txt

Character set: UTF-8

Data format: Tab-separated values

Description: Radiocarbon ( C) ages of the dated samples.

Column label Column description

id Sample ID

measurementType Always "Age"

measurementValue Age value

measurementAccuracy 1 standard deviation

measurementUnit Always "years BP"

measurementMethod Always "Radiocarbon, AMS"

measurementRemarks Measurement remarks
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