1,2H hyperfine spectroscopy and DFT modeling unveil the demethylmenasemiquinone binding mode to E. coli nitrate reductase A (NarGHI)

Maryam Seif Eddine, Frédéric Biaso, Julia Rendon, Eric Pilet, Bruno Guigliarelli, Axel Magalon, Stéphane Grimaldi

To cite this version:

Maryam Seif Eddine, Frédéric Biaso, Julia Rendon, Eric Pilet, Bruno Guigliarelli, et al.. 1,2H hyperfine spectroscopy and DFT modeling unveil the demethylmenasemiquinone binding mode to E. coli nitrate reductase A (NarGHI). Biochimica biophysica acta (BBA) - Bioenergetics, Elsevier, 2020, 1861 (8), pp.148203. 10.1016/j.bbabio.2020.148203. hal-02909846

HAL Id: hal-02909846
https://hal-amu.archives-ouvertes.fr/hal-02909846
Submitted on 14 Dec 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
1,2H hyperfine spectroscopy and DFT modeling unveil the
demethylmenasemiquinone binding mode to *E. coli* nitrate reductase A
(NarGHI)

Maryam Seif Eddine, a,1 Frédéric Biaso, a Julia Rendon, a,2 Eric Pilet, a Bruno Guigliarelli, a
Axel Magalon, b Stéphane Grimaldi a,*

a Aix Marseille Univ, CNRS, BIP, Marseille, France
b Aix Marseille Univ, CNRS, LCB, Marseille, France

1 Present address: Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, W12 0BZ, London, UK
2 Present address: Univ. Grenoble Alpes, CEA, Department of the Interfaces for Energy, Health and Environment, Laboratoire SYMMES, Grenoble, France

*Correspondence to: S. Grimaldi, Aix Marseille University, CNRS, Bioenergetics and Protein Engineering (BIP UMR7281), 31 chemin Joseph Aiguier, CS70071, 13402 Marseille cedex 09, France.
E-mail address: stephane.grimaldi@univ-amu.fr

Keywords
Bioenergetics • Quinones • HYSCORE • Metalloenzyme • Electron Transfer

Abbreviations

(b)RC, (bacterial) reaction center; Cw, continuous wave; $E'_{m,7}$, midpoint redox potential at pH = 7; DFT, density functional theory; (D)MK, (D)MSK, (D)MKH$_2$, (demethyl)menaquinone, (demethyl)menasemiquinone, (demethyl)menaquinol; (D)MSK$_D$, USQ$_D$, (demethyl)menasemiquinone and ubisemiquinone formed at the quinol oxidation site (Q$_D$) from *Ec*NarGHI, respectively; *Ec*NarGHI, membrane-bound nitrate reductase from *Escherichia coli*; ESEEM, electron spin echo envelope modulation; hf(c)(c)(s), hyperfine (coupling) (constant)(s); hfi, hyperfine interaction; EPR, electron paramagnetic resonance; HYSCORE, hyperfine sublevel correlation; IMVs, inner membrane vesicles; nq(cc), nuclear quadrupole (coupling constant); nqi, nuclear quadrupole interaction; Q, SQ, QH$_2$, quinone, semiquinone, quinol; SOMO, singly occupied molecular orbital.
Abstract

The quinol oxidation site Q_D in *E. coli* respiratory nitrate reductase A (EcNarGHI) reacts with the three isoprenoid quinones naturally synthesized by the bacterium, i.e. ubiquinones (UQ), menaquinones (MK) and demethylmenaquinones (DMK). The binding mode of the demethylmenasemiquinone (DMSK) intermediate to the EcNarGHI Q_D quinol oxidation site is analyzed in detail using ^1,2^H hyperfine (hf) spectroscopy in combination with H_2O/D_2O exchange experiments and DFT modeling, and compared to the menasemiquinone one bound to the Q_D site (MSK_D) previously studied by us. DMSK_D and MSK_D are shown to bind in a similar and strongly asymmetric manner through a short (~1.7 Å) H-bond. The origin of the specific hf pattern resolved on the DMSK_D field-swept EPR spectrum is unambiguously ascribed to slightly inequivalent contributions from two β-methylene protons of the isoprenoid side chain. DFT calculations show that their large isotropic hf coupling constants (A_{iso} ~ 12 and 15 MHz) are consistent with both (i) a specific highly asymmetric binding mode of DMSK_D and (ii) a near in-plane orientation of its isoprenyl chain at Cβ relative to the aromatic ring, which differs by ~ 90° to that predicted for free or NarGHI-bound MSK. Our results provide new insights into how the conformation and the redox properties of different natural quinones are selectively fine-tuned by the protein environment at a single Q site. Such a fine-tuning most likely contributes to render NarGHI as an efficient and flexible respiratory enzyme to be used upon rapid variations of the Q-pool content.
1. Introduction

Isoprenoid quinones are lipophilic electron mediators which play key roles in bioenergetics processes leading to efficient harvesting of environmental energy and its conversion into a transmembrane chemiosmotic potential. While they all bear a ring moiety with two oxygen atoms at positions 1 and 4, their chemical structure and electrochemical properties can differ significantly. The vast majority of biological isoprenoid quinones belong to either the low-potential naphthoquinones, e.g. phylloquinones (PhQ or vitamin K₁) and menaquinone (MK or vitamin K₂), or to the higher potential benzoquinones, e.g. ubiquinone (UQ) and plastoquinone (PQ) (Fig. 1) [1]. The crucial role of isoprenoid quinones in bioenergetics relies mainly on (i) their soluble character in lipid bilayers conferred by their apolar hydrophobic side chain which can vary in length, in degree of saturation and in the presence of additional groups, and (ii) on the redox properties of their aromatic ring which can easily and reversibly oscillate under physiological conditions between three different oxidation states with different protonation levels: the oxidized deprotonated quinone state (Q), the intermediate semiquinone (SQ) form which can be anionic (SQ⁻) or neutral (SQH⁺), and the fully reduced and protonated quinol state (QH₂).
Fig. 1. Chemical structures of some naturally occurring isoprenoid low- and high-potential quinones. The type I and type II classification is based on the nature of the C2 substituting group, namely a methyl group for type I and a hydrogen atom for type II [2]. The atom numbering scheme used in the text is shown at the bottom. (D)MK-8, (demethyl)menaquinone-8, PhQ, phylloquinone, UQ-8, ubiquinone-8, PQ-9, plastoquinone-9. The digit indicates the number of prenyl units which may vary in a given organism or between different species. The α-protons are directly bound to the aromatic rings, and the β-protons are found within the methyl group and the first CH₂ group of the quinone prenyl (or phytol for PhQ) chain.

Isoprenoid quinones interact with bioenergetic complexes within well-defined protein sites (called Q sites) where they transiently bind and exchange with the Q-pool, or act as permanently bound cofactors possibly involved in intramolecular electron transfer and proton exchange. Several studies on photosynthetic and respiratory complexes have shown that the (electro)chemical properties of the protein-bound quinones and therefore the reactivity towards quinones can be drastically modulated in a Q site, hence contributing to define the electron transfer directionality in a particular enzyme or its specificity towards quinones [3-6].

The ability of some facultative anaerobes such as *E. coli* to synthesize both low potential (i.e. MK with \(E'_{m,7} \text{MK/MKH}_2 = -70 \pm 10 \text{ mV}\)) and high potential quinones (i.e. UQ with \(E'_{m,7} \text{UQ/UQH}_2 = +100 \pm 10 \text{ mV}\)) [1] opens up the possibility to investigate *in vivo* the specificity of quinone utilization by respiratory complexes [7]. In this context, the respiratory nitrate reductase complex NarGHI from *E. coli* (EcNarGHI) is an excellent model to address this issue. *EcNarGHI* is a membrane-bound heterotrimeric complex which couples the oxidation of quinols at a periplasmically-oriented Q site (Q₀) [8] to the cytoplasmic two-electron reduction of nitrate into nitrite [5, 9, 10]. *EcNarGHI* turnover induces a net translocation of protons across the membrane which contributes to maintaining the transmembrane proton gradient that drives, for instance, ATP synthesis. The NarG catalytic subunit holds the Mo-bisPyranopterin Guanosine Dinucleotide cofactor [11] and a FeS cluster [10, 12, 13]. The electron transfer subunit NarH harbors four FeS clusters [9, 14]. Finally, the cytoplasmically exposed NarGH subunits are connected to the membrane-integral NarI, which has two b-type hemes termed b₀ and bₚ according to their respective distal and proximal positions with respect to the nitrate reducing site [10, 15, 16]. The metal cofactors form a chain of electron transfer relays from the quinol oxidation site Q₀ in NarI to the molybdenum cofactor in NarG.
EcNarGHI has been shown to react with the three quinones synthesized by the bacterium, namely MK, UQ and demethylmenaquinone (DMK) [17-19]. DMK differs from MK by the lack of the methyl group at the C2 position of the quinone ring and by its ~ 60 mV higher redox potential (\(E'_{m,7}\) DMK/DMKH\(_2\) = +36 [20] or -7 mV [21]) (Fig. 1). Using EPR-monitored redox titrations on E. coli inner membrane vesicles (IMVs) enriched in NarGHI, we have previously shown that the EcNarGHI Q\(_D\) site stabilizes the semiquinone intermediate of each of the three endogenous quinones. Noteworthy, a specific hf interaction with a \(^{14}\)N nucleus was similarly detected to each of the three corresponding protein-bound radicals using HYSCORE spectroscopy [19, 22, 23]. Based on multifrequency \(^{14,15}\)N ESEEM/HYSCORE measurements [23], site-directed mutagenesis studies [22, 24] and selective \(^{15}\)N labeling [25], this interacting nucleus has been ascribed to the N\(_6\) imidazole nitrogen of the heme b\(_D\) axial ligand His66. Combining the use of H\(_2\)O/\(^2\)H\(_2\)O exchange experiments, selective \(^2\)H labeling of the ring methyl protons and \(^{1,2}\)H hyperfine spectroscopies, we have shown that MSK\(_D\) is stabilized thanks to a short in-plane H-bond to the quinone oxygen O1, leading to a highly asymmetric distribution of the electron spin density over the semiquinone ring in comparison with the unbound species [25, 26].

Intriguingly, EPR-monitored redox titrations indicated that, in contrast to MSK and USQ [22, 27], the two-electron midpoint potential of EcNarGHI-bound DMK is decreased by at least 30 mV with respect to that of the unbound species [25]. This shift likely results from a redox-dependent differential binding of DMK at the Q\(_D\) site corresponding to a ~10 fold tighter binding of DMK than DMKH\(_2\) to this site. In addition, in contrast to USQ\(_D\) and MSK\(_D\), the DMSK\(_D\) EPR signal exhibits a resolved hf structure from one or several nearby non exchangeable protons [19] whose origin was unclear. Its linewidth has been shown to decrease upon H\(_2\)O/\(^2\)H\(_2\)O exchange, revealing the existence of at least one exchangeable proton weakly coupled to DMSK\(_D\) [25].

To fully resolve the DMSK\(_D\) electronic structure and address the role of the C2 substituent on the naphthoquinone ring in binding to the EcNarGHI Q\(_D\) site, we performed a detailed spectroscopic analysis of DMSK\(_D\) using \(^{1,2}\)H hyperfine pulsed EPR spectroscopy in combination with H\(_2\)O/\(^2\)H\(_2\)O exchange experiments and DFT modeling. Our results show that, in spite of a conserved asymmetric binding mode through a short H-bond, both DMSK\(_D\) and MSK\(_D\) exhibit markedly different orientations of their isoprenyl side-chain. This sheds new light on how a single Q site enables the binding of different quinones and modulate their structural and redox properties.
2. Material and methods

2.1. Sample preparations

NarGHI was expressed in an *E. coli* nitrate reductase-deficient strain JCB4023ubiE (RK4353, ΔnapA-B, narG::ery, ΔnarZ::Ω, Spcr, ΔubiE::Kan) [19, 28] which contains demethylmenaquinone as sole respiratory quinone. pVA700 plasmid (AmpR) [14], which encodes for the *narGHJI* operon under control of the tac promoter, was used in all experiments. Cells were grown in Terrific Broth under semi-anaerobic conditions at 37 °C as described in [19, 24] with ampicillin (100 μg.ml⁻¹) and spectinomycin (50 μg.ml⁻¹) included in the growth medium.

Purified *E. coli* NarGHI-enriched inner membrane vesicles (IMVs) were used for this study, allowing to maintain an unmodified lipid environment and to study the interaction of NarGHI with its endogenous demethylmenaquinol substrate. For this purpose, purified *E. coli* NarGHI-enriched IMVs were isolated by differential centrifugation and sucrose gradient steps as described in [24] using a buffer containing 100 mM MOPS and 5 mM EDTA at pH 7.5. Deuterium-exchanged samples were prepared using the same membrane extraction protocol with a buffer containing ²H₂O (99.9 % atom ²H) instead of ¹H₂O. The functionality of NarGHI in our samples was confirmed spectrophotometrically by measuring the quinol:nitrate oxidoreductase activity. Stabilization of the semiquinone at the Q₀ site was achieved through redox titrations under the same conditions as those described in [19, 24, 27] except that samples were prepared in a glove box. They were redox poised at a potential allowing to maximize the DMSK concentration with respect to the two other redox species (~ - 60 to -90 mV) [19]. Redox potentials are given in the text with respect to the standard hydrogen electrode.

2.2. EPR and HYSCORE spectroscopy

The instrumentation for X- and Q-band CW EPR measurements was previously described [24]. The instrumentation, pulse sequences, and spectral processing for X-band 1D 4-pulse ESEEM (π/2-τ-π/2-t-π-t-π/2-τ-echo) and 2D 4-pulse ESEEM (HYSCORE) (π/2-τ-π/2-t₁-π-t₂-π/2-τ-echo) were also as described [26]. Spectral simulations were carried out using the EasySpin package (release 5.01.1) under Matlab (The MathWorks, Inc., US) [29]. Simulations of ¹²H HYSCORE spectra were carried out assuming axial hfi tensors. Principal axes of hfi tensors were all assumed to be collinear with the g-tensor principal axes unless explicitly stipulated otherwise.
2.3. Hyperfine and nuclear quadrupole interactions

A hfc between a \(S = \frac{1}{2} \) radical and a nucleus with nuclear spin value \(I \) consists in general of (i) the isotropic contribution \(A_{\text{iso}} = 2\mu_0 g_e g_n \beta_e \beta_n |\psi_0(0)|^2/3 \hbar \) where \(|\psi_0(0)|^2 \) is the electron spin density at the nucleus, \(g_e \) and \(g_n \) are electron and nuclear g-factors, respectively, \(\beta_e \) and \(\beta_n \) are Bohr and nuclear magnetons, respectively, \(\hbar \) is Planck’s constant, and (ii) the anisotropic contribution described by the traceless dipolar coupling tensor \(T \). In most cases, \(T \) can be assumed to be axial, with principal values \((-T, -T, 2T)\).

The hfccs of different isotopes of the same element are proportional to a very good approximation to the corresponding \(g_n \) values. In this study, the direct and simultaneous determination of \(A_{\text{iso}} \) and \(T \) of the protons interacting with DMSK were derived from the analysis of \(^1\)H HYSCORE cross-peak contours as described in the Supporting Information [30].

A \(^2\)H nucleus has a quadrupole moment which interacts with the electric field gradient (EFG) at the nucleus. The components of the EFG tensor are defined in its principal axis system and ordered according to \(|q_{ZZ}| \geq |q_{YY}| \geq |q_{XX}| \). This traceless tensor can then be fully described by only two parameters: (i) the \(^2\)H nuclear quadrupole coupling constant \(\kappa = |e^2 q_{ZZ} Q/\hbar| \), where \(e \) is the charge of an electron, \(Q \) is the \(^2\)H nuclear electric quadrupole moment, (ii) the asymmetry parameter \(\eta = |q_{YY} - q_{XX}|/q_{ZZ} |. \(\kappa \) is a measure of the strength of the interaction between the nuclear quadrupole moment and the EFG at the \(^2\)H nucleus site due to anisotropic charge distribution around the nucleus whereas \(\eta \) is a measure of the deviation of this distribution from axial symmetry. Thus, the EFG is related to the specific binding geometry. Its components can, therefore, be used to obtain detailed information on hydrogen bonds. In this study, parameters \(\kappa \) and \(\eta \) of the \(^2\)H nucleus interacting with DMSK\(_D\) were estimated by simulating X-band \(^2\)H HYSCORE spectra.

2.4. DFT calculations

All calculations have been performed with Orca 3.0 quantum chemistry package [31] at a DFT level of theory, using the B3LYP hybrid functional (the Becke’s three parameters hybrid exchange functional with 20% of Hartree-Fock admixture and the Lee-Yang-Parr non local correlation functional). A restricted geometry optimization has been performed \textit{in vacuo} on each model with the def2-SVP basis set [32, 33]. The resolution of identity with the appropriate auxiliary basis sets was used to accelerate the calculations [34]. The optimized
structures have then been used as input for electronic and magnetic properties calculations, using the EPR-II basis set [35] and employing the conductor-like screening model COSMO [36] with a dielectric constant $\varepsilon = 4.0$ to replicate electrostatic effects of the protein surrounding. 1H hfi and 2H nqi coupling constants of the methyl group were calculated by averaging the raw matrices corresponding to the three positions of the methyl protons and the eigenvalues and eigenvectors were determined.

3. Results and discussion

3.1. Field swept Electron Spin Echo (ESE) EPR spectra of DMSK

To specifically study the interaction of EcNarGHI with its natural DMK substrate, NarGHI-enriched IMVs were purified from an E. coli ubiE strain containing DMK as its sole respiratory quinone. The sample was titrated and redox poised to stabilize the maximal amount of DMSK, and studied by EPR methods at 90 K. At this temperature, the radical can be specifically probed without spectral contamination from other faster relaxing paramagnetic centers such as EPR-active cofactors in EcNarGHI [19]. X-band field swept ESE spectra of NarGHI-enriched IMVs recorded at 90 K from samples prepared either in H$_2$O (solid line) or in 2H$_2$O (dotted line) are shown in Fig. 2. The EPR signal is characterized by an average g-value $g_{\text{av}} \approx 2.0045$. This signal is not present in NarGHI-deficient IMVs prepared and titrated in similar conditions [19]. The characteristic structure of DMSK$_D$ is best resolved in the ESE spectrum recorded using the 2H$_2$O-exchanged sample due to the decrease of the linewidth upon replacement of H$_2$O by 2H$_2$O [19]. This decrease, which results from downscaling of hyperfine coupling constants (hfc) of exchangeable 2H nuclei by a factor of ~ 6.5 compared to the 1H one’s, indicates that at least one nearby exchangeable proton is coupled to the radical [19]. In the following, spectral resolution was further increased by using 2D pulsed hyperfine spectroscopy.
Fig. 2. Field swept ESE spectra of NarGHI-bound DMSK prepared in H₂O (solid line) and
³H₂O (dotted line). Microwave frequency, 9.700 GHz (H₂O), 9.686 GHz (³H₂O). A magnetic
field offset of -4.5 G was applied to the spectrum measured in ³H₂O. Spectra are normalized
to the same amplitude.

3.2. Analysis of ¹H resonances in HYSCORE spectra of DMSK in H₂O or ³H₂O buffer

To provide detailed insights into the DMSK₃ electronic structure and accurate
information about its proton environment, HYSCORE experiments were performed at 90 K
using the EcNarGHI samples studied in previous section. Fig. 3A shows a representative ¹H
HYSCORE spectrum of DMSK₃ prepared in H₂O buffer. It has been recorded with τ = 204 ns
to suppress the strong diagonal peak at ν(¹H) = 14.7 MHz contributed by matrix protons. Five
pairs of cross-features located symmetrically relative to the diagonal can be distinguished
in this spectrum. They are designated 1-5 in Fig. 3A and arise from protons that are magnetically
coupled with the unpaired electron spin of DMSK₃. Among them, ridges 5, 5’ exhibit the
largest hf splitting estimated to ~ 15 MHz by measuring the distance between their maxima.
They appear therefore well separated from the others which are contributed by protons with hfccs
smaller than ~ 6 MHz. Notably, the ~ 15 MHz splitting is nearly three times larger than the
largest one previously detected on the corresponding ¹H HYSCORE spectrum of MSK₃ and
assigned to the three equivalent methyl protons with Aiso ~ 5.5 MHz [25, 26]. Cross-
ridges 3-3’ possess the most extended anisotropic contour, with the largest deviation from the
diagonal, whereas cross-peaks 4-4’ deviate significantly from the normal to the diagonal.
These two features indicate a significant anisotropic component of the corresponding hfi
tensor(s). Cross-peaks 2-2’ and 4-4’ partially overlap. Contours 1-1’ and 2-2’ are
approximately normal to the diagonal, suggesting a smaller anisotropic component of the corresponding \(^1\)H hfi tensors. To discriminate cross-features arising from exchangeable or non-exchangeable protons, HYSCORE measurements were carried out on the sample prepared in \(^2\)H\(_2\)O buffer using similar conditions to those used for the sample prepared in H\(_2\)O (Fig. 3B). Cross-peaks 3-3' and 4-4' completely disappear in the DMSK\(_D\) \(^1\)H HYSCORE spectrum of the sample prepared in \(^2\)H\(_2\)O buffer. This shows that they arise from at least one exchangeable proton, in consistency with the decrease of the linewidth observed in the field-swept EPR spectra upon H\(_2\)O/\(^2\)H\(_2\)O buffer exchange. In contrast, the other cross-peaks are not affected by buffer exchange, indicating that they are produced by non-exchangeable protons. No other feature than those discussed above were detected in \(^1\)H HYSCORE spectra recorded using other \(\tau\) values.

Fig. 3. \(^1\)H HYSCORE spectra of DMSK\(_D\) in H\(_2\)O (A) or in \(^2\)H\(_2\)O (B). Microwave frequency, 9.6944 GHz (A) and 9.7045 GHz (B); magnetic field, 345.2 mT (A) and 345.9 mT (B). Other experimental parameters are as given in Material and methods, time between first and second pulses \(\tau = 204\) ns.

\(^1\)H HYSCORE spectra were quantitatively analyzed using the square frequency plot to assess the number of coupled protons and determine their respective hyperfine characteristics [30]. The \(\nu_a^2\) versus \(\nu_i^2\) plot of the cross-features analyzed from the DMSK\(_D\) \(^1\)H HYSCORE spectra shown in Fig. 3 is depicted in Fig. 4 together with linear regressions of ridges 1-5 and assuming axial symmetry for all proton hyperfine interaction (hfi) tensors. The corresponding slopes and intercepts are given in Table S1 with the two possible sets of (\(A_{\text{iso}}, T\)) that satisfy
Eq. S2 and S3. The results indicate that ridges 1-1’ and 2-2’ arise from at least two distinct non exchangeable protons, hereafter referred to as H_A and H_B, respectively, whereas 3-3’ and 4-4’ are the sub-ridges of cross-features belonging to a single additional exchangeable proton named H_C characterized by an anisotropic contribution $|T(\text{H}_C)| \sim 5.6$ MHz. This value is consistent with the one calculated from the shift of the single sum combination line from $2\nu_1(\text{^1H})$ measured in four-pulse ^1H ESEEM spectra of DMSK_D prepared in H$_2$O (see supplementary information and Fig. S1). In contrast to H_A and H_B, selection of the right (A_{iso}, T) for proton H_C from the two alternatives has been achieved based on numerical simulations of HYSCORE spectra. Indeed, the experimental relative intensities of ridges 3-3’ and 4-4’ can only be well reproduced using $A_{\text{iso}} = \mp 0.2$ MHz and $T = \pm 5.8$ MHz (Fig. 5A and Table 1).

A peculiar feature of ^1H HYSCORE spectra of DMSK_D prepared either in H$_2$O or in 2H$_2$O is the presence of cross peaks 5-5’ indicating that these features arise from at least one non exchangeable proton strongly coupled to the radical (Fig. 3). In contrast to the other HYSCORE features, the points measured along the 5-5’ ridges do not align on a straight line in the square frequency plot, rendering the simple analysis presented above not satisfactorily applicable. However, ridges 5-5’ are well accounted for by a linear regression assuming that they are due to partially overlapping cross-features originating from two protons with distinct axially symmetric hfi tensors and that each of them mainly contributes to opposite sides (referred to 5_A-$5'_A$ and 5_B-$5'_B$ in Fig. 4) of the same ridge. Using this approach, the anisotropic components of the hfi tensors of these two protons (hereafter referred to as H_D and H_E) are found to be similar, namely $|T| \sim 2.0\text{-}2.1$ MHz while their isotropic components are slightly different, i.e. $|A_{\text{iso}}| (\text{H}_D) = 12$ or 14 MHz, and $|A_{\text{iso}}| (\text{H}_E) = 15$ or 17 MHz (Table S1).
Fig. 4. Plot of cross-peaks detected in 1H HYSCORE spectra of DMSK in the v_α^2 versus v_β^2 coordinate system. Straight lines show the linear fit of plotted data points. The dashed line is defined by $v_\alpha^2 = v_\beta^2$ and corresponds to the diagonal in the (+, +) quadrant of HYSCORE spectra. The lowermost contours were used to measure the coordinates of arbitrary points along the ridge of each proton cross-peak in HYSCORE spectra of DMSK$_D$ in H$_2$O (3', 4) or 2H$_2$O (1', 2', 5').

3.3. Characterization of the exchangeable deuteron by 2H HYSCORE

Further details concerning exchangeable protons coupled to DMSK$_D$ were obtained through the use of 2H HYSCORE spectroscopy. Given that the largest exchangeable proton splitting in the DMSK$_D$ HYSCORE spectra measured at different τ values is ~ 6 MHz and that 2H nuclei give rise to weak quadrupole splittings (typically a few tenths of MHz) [26, 37], a splitting not greater than 1 MHz is predicted in DMSK$_D$ 2H HYSCORE spectra. However, this feature is expected to be hardly detectable because of the intense and broad diagonal peak at $v_l(^2H) \sim 2.3$ MHz arising from weakly coupled matrix 3H which dominates ESEEM/HYSCORE spectra of 2H$_2$O exchanged protein samples [26, 38]. To suppress this intense signal, a HYSCORE spectrum of DMSK$_D$ prepared in 2H$_2$O buffer has been measured using a τ-value of 416 ns and is shown in Fig. 5B. It is compared to the corresponding spectrum of MSK$_D$ measured using similar conditions (Fig. 5C). Complete suppression of the peak at $v_l(^2H) \sim 2.3$ MHz allows to resolve croissant-shaped cross peaks positioned
symmetrically around $v_I(\text{^2H})$ which are very similar for the two radicals. This peculiar shape for a powder HYSCORE spectrum of a \((S = \frac{1}{2}, I = 1)\) spin coupled system is well simulated by downscaling for \(^2\text{H}\) nucleus the H_C hf parameters obtained from analysis of the \(^1\text{H}\) HYSCORE spectra, assuming that a single \(^2\text{H}\) nucleus contributes (Fig. 5B). In addition, our numerical simulations indicated that the anisotropic hfi is mainly responsible for the elongation of the ridges perpendicularly to the diagonal (not shown) whereas the nqi is known to induce a splitting of the ridges parallel to the diagonal [39, 40], allowing these two contributions to be well distinguished from each other. Whereas the simulated spectrum is very sensitive to the magnitude of the nqcc κ, variations of the asymmetry parameter η in the $[0, 1]$ range have negligible effects. Therefore, a value of $\kappa(H_C) = 0.17 \pm 0.02$ MHz can be estimated (Table 1). This value is consistent with that determined from analysis of the DMSK$_D$ Q-band \(^2\text{H}\) Mims ENDOR spectrum measured at ~ 34 GHz (Fig. S2). Eventually, variations of the relative angle between the unique axes of hyperfine and nuclear quadrupole tensors have a modest effect on the simulated spectrum. This angle is therefore estimated to $0^\circ \pm 25^\circ$. Consequently, hyperfine and quadrupole tensors were assumed to be collinear in the simulations shown in Figure 5B and 5C.

![Fig. 5. Contour plot of experimental and simulated (red contours) HYSCORE spectra from the exchangeable \(^1\text{H}\) (A) or \(^2\text{H}\) (B, C) coupled to DMSK$_D$ (A,B) or MSK$_D$ (C) in \(E.c\)NarGHI prepared in H$_2$O (A) and in \(^2\text{H}_2\text{O}\) buffer (B, C). Simulation parameters are given in Table 1, and rescaled for \(^2\text{H}\) nuclei when relevant. Other experimental parameters are: microwave frequency, 9.691 GHz (A), 9.686 GHz (B) and 9.693 GHz (B), τ-value, 204 ns (A) and 416 ns (B, C).](image)

Table 1
The exchangeable proton coupled to DMSK\textsubscript{D} is involved in a short hydrogen bond to the radical

Interestingly, comparative analysis of the 1,2H HYSCORE, four-pulse ESEEM and Q-band 2H Mims ENDOR spectra measured on DMSK\textsubscript{D} and MSK\textsubscript{D} reveals similar hfi and nqi characteristics for the detected exchangeable 1,2H nucleus (H\textsubscript{C}) coupled to the two protein-bound radical intermediates (Table 1). On the basis of its hf characteristics, this exchangeable proton is assigned to a proton involved in H-bonding to one of the quinone carbonyl oxygens [26]. This proton combines both an almost zero A\textsubscript{iso} value and a relatively large |T| value (|T| \sim 5.6 MHz) for a proton H-bonded to a protein-bound semiquinone. A small A\textsubscript{iso} is expected when the H-bond lies in the quinone ring plane due to small overlap between the hydrogen 1s orbital and the oxygen 2\textsubscript{pz} orbital forming part of the semiquinone SOMO. In addition, the large |T| value of H\textsubscript{C} is predicted to account for a short hydrogen bond length with substantial covalent character. In this context, DFT calculations have shown that the H-bond length r\textsubscript{O-H} can be more reliably evaluated from the nqcc \kappa of the corresponding substituted 2H using the following empirical relation [41]:

\[\kappa = a - b/r\textsubscript{O-H}^3 \]

(Eq. 1)

where a and b are empirical parameters. The value \kappa = 0.17 \pm 0.02 MHz determined for DMSK\textsubscript{D} is similar to that obtained for MSK\textsubscript{D}, confirming a similar hydrogen bond geometry of both radical species. A distance r\textsubscript{O-H} \sim 1.6 \pm 0.1 \text{ Å} can be estimated using Eq. 1, a = 319 kHz and b = 607 kHz-1Å [42]. This value is in the range of short hydrogen bonds for

<table>
<thead>
<tr>
<th>Semiquinone species</th>
<th>1H (A\textsubscript{iso}, T) [MHz]</th>
<th>2H (\kappa [MHz], \eta)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMSK\textsubscript{D}</td>
<td>-0.20 \pm 0.06, 5.8 \pm 0.1</td>
<td>0.17 \pm 0.02, 0.2</td>
<td>This work</td>
</tr>
<tr>
<td>MSK\textsubscript{D}</td>
<td>+0.06, 5.73</td>
<td>0.176, 0.2</td>
<td>[25], [26]</td>
</tr>
</tbody>
</table>
biological systems. For instance, it is similar to that formed from the carbonyl oxygen O4 of the ubisemiquinone QA in reaction centers from *Rhodobacter sphaeroides* R-26 to the imidazole nitrogen N5 of His M219 ($r_{O-H} = 1.60 \pm 0.04$ Å [42]. In addition, 14N HYSCORE spectroscopy has revealed a similar through-bond interaction of both MSKD and DMSKD with a nitrogen nucleus that, in the case of MSKD, has been unambiguously assigned to the N5 imidazole nitrogen of the heme bD axial ligand His66 [22, 23, 25]. Therefore, the exchangeable proton HC coupled to DMSKD is similarly attributed to a H-bond between one of the SQ oxygen atoms and this nitrogen atom.

3.5. Assignment of 1H hyperfine couplings to DMSKD by DFT modeling

A remarkable characteristic of DMSKD 1H HYSCORE spectra is the detection of cross peaks associated with unusually strong hf couplings arising from two non-exchangeable protons (HD and HE). Notably, the isotropic hfcc of HE (i.e. ~16 MHz) is the largest one measured so far for a protein-bound semiquinone [43]. Importantly, spectral simulations (Fig. 6) show that the resolved hf structures detected on the cw X- and Q-band EPR spectra of DMSKD which are best seen in samples prepared in 2H2O are well accounted for by the contribution of protons HD and HE using the hfc tensors given in Table 2 derived from analysis of HYSCORE spectra (see Table S1 in Supplementary information).
Fig. 6. A) Experimental and simulated (red contour plot) HYSCORE cross features of DMSK$_D$ in 2H$_2$O buffer. B) Experimental (black solid line) and simulated (red dotted line) continuous wave EPR spectra of DMSK$_D$ in 2H$_2$O measured at X- (B) and Q-band (C) frequencies. Simulations have been performed by considering the contributions of H$_A$, H$_B$, H$_D$ and H$_E$ with individual hfccs as given in Table 2. Experimental conditions: redox potential, -65 mV (A,B) and -70 mV (C), temperature, 60 K (B) and 150 K (C), microwave frequency, 9.482 GHz (B) and 34.122 GHz (C), microwave power, 0.1 mW (B) and 5 µW (C), modulation amplitude, 0.3 mT, modulation frequency, 100 kHz. The signal indicated by an asterisk in Fig. 6C is due to paramagnetic impurities in the Q-band resonator. Experimental spectrum in A) corresponds to that shown in Fig. 3B.

To identify the origin of the hf couplings, we assume that DMSK$_D$ and MSK$_D$ display a similar strongly asymmetric binding mode to NarGHI. Indeed, this assumption is based on the detection of similar hf and nq characteristics for the single exchangeable 1,2H nucleus and of the 14N nucleus coupled to DMSK$_D$ and MSK$_D$. In our previous work on MSK$_D$, these nuclei were shown to be involved in a short hydrogen bond to the quinone carbonyl oxygen O1 which induces a strong decrease (~30 %) of the spin density on the Cα at the 2-position in comparison to a symmetrical hydrogen bonding situation to both carbonyl oxygens [25, 26, 44]. This model was supported by DFT calculations performed on a simple molecular model referred to as Im-MSK involving a deprotonated MSK hydrogen bonded via its carbonyl oxygen O1 to the N₅ of an imidazole ring, with an isoprenoid chain truncated after the fourth carbon atom. Structural parameters inherent to this simple model were chosen to be consistent with available spectroscopic and crystallographic data. These include an O1-H distance r_{O-H} of 1.7 Å between the imidazole ring and the quinone carbonyl oxygen O1, an in-plane hydrogen bond angle $\alpha = 0^\circ$, an out-of-plane hydrogen bond angle $\beta = 30^\circ$, and a twist angle between SQ and imidazole rings $\varphi = 30^\circ$ (angles α, β and φ are defined in Fig. S3) [25]. In particular, this model accounts well for the unusually small value of the isotropic hfcc to the three equivalent methyl protons substituting the MSK$_D$ aromatic ring (i.e. $A_{iso} \sim 5.5$ MHz).
Table 2

Comparison between principal values of the g-tensor and 1H hyperfine coupling tensors of DMSK$_D$ determined from analysis of HYSCORE spectra, or calculated by DFT methods using the Im-DMSK model with a C2C3CβCγ dihedral angle $\gamma = 10^\circ$. Proton numbering is according to molecular positions given in Fig. 1. Principal values of the axial hyperfine tensors are defined as \([A_{\text{iso}}-T, A_{\text{iso}}-T, A_{\text{iso}}+2T]\) using the values given in Table S1, unless otherwise specified, and the corresponding signs of \(A_{\text{iso}}\) and T are selected according to DFT calculations.

<table>
<thead>
<tr>
<th></th>
<th>Experimental</th>
<th>Calculated</th>
</tr>
</thead>
<tbody>
<tr>
<td>g-tensor principal values</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0061, 2.0050, 2.0023</td>
<td>2.0064, 2.0051, 2.0022</td>
</tr>
<tr>
<td>1H hyperfine coupling tensors [MHz]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proton numbering</td>
<td>Assignment</td>
<td>A_{iso}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>([A_{\perp}, A_{\perp}, A_{//}])</td>
</tr>
<tr>
<td>H2</td>
<td>Hβ</td>
<td>-5.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[-8.4, -8.4, 0.6]1,2</td>
</tr>
<tr>
<td>Hβ-CH2</td>
<td>HD</td>
<td>11.51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[9.4, 9.4, 15.7]1,3</td>
</tr>
<tr>
<td></td>
<td>HE</td>
<td>16.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[14.0, 14.0, 20.1]1,3</td>
</tr>
<tr>
<td>Hγ</td>
<td></td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[-0.4, -0.8, 1.8]</td>
</tr>
<tr>
<td>H5</td>
<td>HA</td>
<td>-1.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[-3.0, -3.0, 2.7]</td>
</tr>
<tr>
<td>H6</td>
<td></td>
<td>-2.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[-3.2, -4.3, -0.3]</td>
</tr>
<tr>
<td>H7</td>
<td></td>
<td>-1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[-2.3, -2.8, 0.2]</td>
</tr>
<tr>
<td>H8</td>
<td></td>
<td>-1.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[-1.5, -3.1, 0.7]</td>
</tr>
</tbody>
</table>

1 Refined from simulations of HYSCORE spectra, or/and of X- and Q-band EPR spectra
Therefore, assuming a similar binding mode for DMSK\textsubscript{D} and MSK\textsubscript{D}, the redistribution of the spin density in the ring-localized SOMO of the strongly asymmetrically bound DMSK with respect to a symmetrical hydrogen bonding situation results in its increase at carbon C3 to which the CH\textsubscript{2} group is attached (Fig. 7). This is hence expected to lead to a concomitant increase of the isotropic hfcc $A_{iso \beta-H}$ of these protons, according to the McLachlan formula:

$$A_{iso \beta-H} = (B_0 + B_1 \cos^2 \theta) \rho_{C3-x}$$

(Eq. 2)

ρ_{C3-x} is the spin density on carbon C3, θ is the angle between the CH bond and the axis of the p_z carbon orbital both projected in a plane orthogonal to the Cα-Cβ bond (Fig. 8), B_0 is a constant that is close to zero, and B_1 is also a constant with a value in the range [120 – 212] MHz [45].

![Free (D)MSK](symmetrical hydrogen bonding)

![NarGHI-bound (D)MSK](asymmetrical hydrogen bonding)

Fig. 7. Comparison of electronic spin density distribution between symmetrically hydrogen-bond (e.g. free) (D)MSK (left) and asymmetrically hydrogen-bond (e.g. NarGHI-bound) (D)MSK (right), with truncated isoprenyl chain. Spin density populations are represented by red circles whose radius is proportional to the spin density carried by the atom at the center of the circle (cut off = 0.01). The red arrow emphasizes the shift of the spin density from C2 to C3 due to the asymmetric (D)MSK\textsubscript{D} binding mode. H-bond partners are omitted on the left diagram. R = H (DMSK) or CH\textsubscript{3} (MSK).
Further, the nature of the substituent at the C2 carbon atom has been shown to be a crucial factor determining the θ value for semiquinones solubilized in various solvents [2, 46, 47]. In the lowest energy conformation of quinones with methyl-substituted C2 carbon (referred to as type I quinones, see Fig. 1) like MK, PhQ and UQ, the two β-CH₂ protons have A_{iso} β-CH₂ values ~ 1-4 MHz, corresponding to (θ₁, θ₂) ~ (+60°, -60°) or ~ (+120°, -120°) [46, 48, 49] (Figure 8A and B). This translates into a C2C3CβCγ dihedral angle γ for the first isoprenyl unit relative to the quinone ring of ~ 90° or 270°, respectively, leading to a perpendicular head-to-tail orientation [2]. In contrast, type II quinones with proton-substituted C2 carbon like plastoquinones exhibit larger β-CH₂ couplings (e.g. A_{iso} β-CH₂ ~ 7.0 MHz for PQ-9 in 2-propanol), corresponding to (θ₁, θ₂) ~ (+30°, +150°) or (-30°, -150°) for these two protons (Figure 8C and D) [2, 50-52]. The corresponding C2C3CβCγ dihedral angle γ is then 0° or 180°, respectively, placing the isoprenyl chain in the plane of the quinone ring while minimizing steric repulsions between the carbonyl oxygen and the Cγ substituents. These conclusions have been further substantiated by DFT calculations [47] and molecular dynamics simulations on PQ and UQ radical anion models [53, 54] showing that the presence or absence of the methyl group at the C2 carbon is indeed a crucial factor for determining the rotational arrangements of the quinones.

Fig. 8. Schematic conformation of the β-CH₂ protons and of the isoprenyl side chain relative to the ring for free (unbound) type I (e.g. MK) (A, B) and type II (e.g. DMK) (C, D) quinones.
Newman projections along the Cβ-C3 axis are shown. The inset shows the definitions of angles θ and γ used in the text. θ angles for the two β-CH₂ protons are ±120° (A), and ±60° (B), 30° and 150° (C), -30° and -150° (D).

Based on these previous works and given that DMSK is a type II quinone, we assigned HD and HE to the two β-CH₂ protons of the highly asymmetrically bound DMSK₃ side chain with an orientation suitable to generate large hyperfine coupling constants for these protons. In addition, this orientation is predicted to differ from that of MSK₃, explaining the apparent differences in the magnitude of the CH₂ hf couplings between MSK₃ and DMSK₃ inferred from analysis of their respective ¹H HYSCORE spectra. To further support this assignment and compare the conformation of the DMSK₃ and MSK₃ side chain relative to the quinone ring, isotropic β-CH₂ hfccs were computed for all possible θ values for DMSK (Fig. 9A) and MSK (Figure 9B) using the Im-DMSK and Im-MSK models, respectively. These orientations were explored through a systematic variation of the C2C3CβCγ dihedral angle γ from -180° to 180°, in 5° or 10° step. At first, it can be noticed that Aiso β-CH₂ values as high as ~20 MHz are calculated using these models, supporting the assignment of HD and HE to the two β-CH₂ protons of DMSK₃. Further, comparison between calculated β-CH₂ isotropic hfccs and corresponding experimental values for HD and HE (i.e. Aiso (HD) ~ 12 MHz and Aiso (HE) ~ 16 MHz) determined from spectral analysis reveals that the best agreement is found for γ values close to ± 10° (Fig. 9A). This indicates that the isoprenyl CβCγ bond of the DMSK₃ side chain is nearly coplanar to the aromatic ring (Fig. 10A).

Fig. 9. Influence of the C2C3CβCγ dihedral angle γ on the isotropic hyperfine coupling constant Aiso β-CH of the two β-CH₂ protons (red and black squares, respectively) in the Im-DMSK model (A) and Im-MSK model (B). Light blue horizontal bars show the values
consistent with HYSCORE data while light blue vertical bars show the corresponding ranges of γ values where calculated hfccs best agree with experimental data.

The principal values of the hfi tensors for non-exchangeable protons coupled to DMSK calculated using the Im-DMSK model with $\gamma \sim 10^\circ$ are reported in Table 2 where they are compared to the axially symmetric hfi tensors determined for protons H_A, H_B, H_D and H_E. The calculated isotropic hfcc for the C2 α-proton H_2 ($A_{iso} \sim -5.4$ MHz) is in very good agreement with the value $A_{iso} (H_B) \sim -5.4$ MHz inferred from the simulation of EPR and HYSCORE spectra (Table 2). Therefore, H_B is assigned to the DMSK$_D$ C2 substituting α-proton H_2. Notably, its $|A_{iso}|$ value is similar to that determined for the three equivalent methyl protons on the MSK$_D$ ring, i.e. $A_{iso} \sim 5.5$ MHz [26]. This provides further support for the similar asymmetric binding mode of DMSK$_D$ and MSK$_D$ to EcNarGHI.

Eventually, the calculated A_{iso} values for the other DMSK ring protons as well as that of the γ-proton of the side-chain lie in the range [0.2 – 2.6] MHz (Table 2), the largest coupling being due to the C6 substituting proton H_6. $|A_{iso}|$ values ~ 1.0 MHz determined for H_A lie within this range, indicating that several protons contribute to the observed 1-1’ cross peaks and that H_A cannot be attributed to a single proton.

3.6. The conformations of the DMSK$_D$ and MSK$_D$ isoprenyl chains relative to the quinone head differ by ca. 90$^\circ$.

Examination of calculated β-CH$_2$ isotropic hfccs for MSK$_D$ indicates that out-of-plane conformations with $\gamma = \pm 90^\circ$ ($\pm 5^\circ$) best account for our spectroscopic data on MSK$_D$ [26]. Indeed, these two situations lead to calculated A_{iso} β-CH$_2$ values ~ 4.4 MHz for the two protons using the Im-MSK model (Fig. 9B). These are consistent with MSK$_D$ HYSCORE spectra in which no proton resonance with hfcc > 5 MHz is detected other than those clearly assigned to the methyl protons and to the exchangeable proton discussed above [26].

Besides, hfccs of 3 MHz and 1.5 MHz were resolved in 1H ENDOR spectra of MSK dissolved in 2-propanol and assigned to the β-CH$_2$ protons [55]. The magnitude of these couplings was shown to be indicative of the perpendicular head-to-tail orientation of the menaquinone radical anion in solution [47]. Therefore, the conformation of the MSK$_D$ side chain appears to be similar to that of the unbound species i.e. MSK in solution. Finally, the in-plane conformation of the isoprenyl chain relative to the semiquinone head of DMSK$_D$ differs from that of MSK$_D$ by ca. 90$^\circ$ (Fig. 10).
Fig. 10. Proposed conformations for DMSK$_D$ (A) and MSK$_D$ (B) inferred from this work. Stick representations using the Im-MSK and Im-DMSK models are shown together with the distribution of the electron spin density over the semiquinone rings (cut off = 0.003). C2C3CβCγ dihedral angle γ is 10° (A) or 90° (B).

3.7. The protein environment in the NarGHI Q$_D$ site finely tunes the side chain orientation of the accommodated demethylmenaquinone.

Despite their simplicity, the Im-(D)MSK models account well for the EPR spectroscopic data collected on MSK$_D$ and DMSK$_D$ without relying on any protein constraint on the side chain of the modeled quinones. In Fig. 11, the computed potential energy curves for rotation about the C3Cβ bond are compared for the Im-MSK and the Im-DMSK models. For the Im-MSK model, the potential displays two well-defined single minima at C2C3CβCγ dihedral angles $\gamma \sim +90^\circ$ and -100° as expected for type I quinones (Fig. 11, red squares). These orientations match with those determined above for MSK$_D$, indicating that the protein environment has no significant influence on the orientation of the head-to-tail orientation of the bound menasemiquinone. The two highest energy conformations arise from steric repulsion between the Cγ substituents and the C2 methyl group protons ($\gamma \sim 0^\circ$) or O4 ($\gamma \sim \pm 180^\circ$) and lead to a calculated energy barrier of ~ 5.3-5.5 kcal/mol. This barrier agrees very well with the 5-7 kcal/mol estimate obtained from linewidth effects in β-proton EPR measurements on vitamin K1 anion radicals [46].

The rotational energy plot for the Im-DMSK model in which the quinone C2 methyl group is substituted by a hydrogen atom exhibits three minima at angles $\gamma \sim -100^\circ$, $\sim 20^\circ$ and $\sim 110^\circ$ with a low barrier ~ 1.6 kcal/mol$^{-1}$, between these three nearly perpendicular orientations (Fig. 11, black squares). Energy differences between these minima do not exceed
0.6 kcal.mol\(^{-1}\), indicating that in the absence of protein constraints on the quinone side chain, DMSK can easily oscillate between these three energetically nearly equivalent conformations, leading most likely the quinone moiety to perform a wagging motion in solution, as proposed for free plastoquinones [47]. In contrast, our \(^1\)H hfc measurements show that the DMSK\(_D\) aromatic ring and the isoprenyl C\(\beta\)C\(\gamma\) bond of the side chain are nearly coplanar, a situation corresponding closely to the calculated secondary energy minimum at \(\gamma \sim 20^\circ\) using the Im-DMSK model. This suggests that the protein environment in the EcNarGHI Q\(_D\) site finely tunes the conformation of the DMSK side chain, selecting one of the three low energy conformers found in the absence of protein constraints on the side chain. Eventually, the EcNarGHI Q\(_D\) site appears to be able to accommodate various types of naphthoquinones with markedly different head-to-tail orientations corresponding most likely to one of the lowest energy conformations of their native semiquinones in solution.

![Head-to-tail rotational energy plot (kcal/mol) of the Im-MSK (red squares) and Im-DMSK (black squares) models. The insert shows the Newman projection of quinone models along the C3-C\(\beta\) axis and the definition of \(\theta\) and \(\gamma\) angles.](image)

Fig. 11 Head-to-tail rotational energy plot (kcal/mol) of the Im-MSK (red squares) and Im-DMSK (black squares) models. The insert shows the Newman projection of quinone models along the C3-C\(\beta\) axis and the definition of \(\theta\) and \(\gamma\) angles.

3.8. *Role of the protein environment in tuning the head-to-tail orientation of the bound (semi)quinones.*

The present work shows that the protein environment in the EcNarGHI Q\(_D\) site can have a significant influence on the accessible conformation of the first isoprenoid unit of the side chain of the bound quinone. This property can be discussed in light of previous spectroscopic and structural studies on the well-studied primary electron acceptor Q\(_A\) in bRC
or in plant photosystem II (PSII). Using temperature-dependent special TRIPLE experiments in 2H$_2$O-exchanged sample, the spectral contributions of two distinct β-CH$_2$ protons coupled to the reduced plastosemiquinone QA$^-$ generated in PSII could be distinguished [2]. Comparison with corresponding data obtained on free PSQ-9 in solution led to the proposal that the conformation of the PSQ isoprenyl chain at Cβ relative to the aromatic ring is conserved upon binding to PSII. Further, on the basis of comparison with available hf data obtained on type I (i.e. with a CH$_3$ group at C2) and type II semiquinone anions in solution together with analysis of the dihedral angle γ of the type I menaquinone or ubiquinone bound to the QA site of different bacterial RCs (bRCs), it has been proposed that this angle for type II plastoquinone in the QA site of higher plant PSII differs from that of MK or UQ in bRC by ca. 90°. Interestingly, quinone replacement experiments have highlighted a high specificity of the QA site in PSII and in bRC for their respective endogenous quinone [56, 57] and this has been proposed to arise from the evolution of different reaction center protein structures surrounding the isoprenyl/quinone head junction to accommodate the favoured low energy conformers of type I and type II semiquinones [2].

However, it is worth to mention that the conformations of the plastoquinone side-chain within the PSII QA site resolved in the available X-ray crystal structures appear very diverse, ranging from an almost in-plane conformation with $\gamma = -10^\circ$ in the PSII from Thermosynechococcus elongatus (pdb code 5MX2) [58], to a perpendicular head-to-tail conformation with $\gamma = 88^\circ$ - 89° in that from Pisum sativum (pdb code 5XNL) [59], via intermediate situations with γ angles in the range of 32° to 70° in the PSII from Thermosynechococcus vulcanus (pdb code 5B66) [60] or Thermosynechococcus elongatus. In line with our results on the NarGHI QD site, this shows that the protein environment can tune the conformation of the bound quinones. In the case of MSK$_D$, the steric interactions between the isoprenyl chain and the substituting methyl group on C2 are stronger than the constraints due to the protein environment, and the perpendicular orientation of the isoprenyl chain with respect to the aromatic ring is maintained. In contrast, in DMSK$_D$, the steric interactions of the isoprenyl chain with the C2 substituent are weaker and the protein constraints are sufficient to enable a conformation selection leading to an isoprenyl chain parallel to the ring. Such an influence of the protein surrounding on the quinone conformation could play a role in either optimizing enzyme functioning and/or in tuning the specificity of a given Q site towards quinones [2].
3.9. Implications of the presence/absence of a ring methyl group on the structure and function of Q sites.

While it has been shown in vivo that several bioenergetics complexes can react with both MK and DMK, e.g. E. coli cytochrome bo3 and cytochrome bd [61], detailed molecular investigations aimed at comparing the binding mode and the functional properties of these two different quinones bound to the same Q site are still lacking. In a previous study on PSI, it has been shown that the inactivation of the gene (i.e. menG) responsible for transferring the methyl group to 2-phytyl-1,4-naphthoquinone in the biosynthetic pathway of phylloquinone (a type I quinone, Fig. 1) results in the incorporation of a 2-phytyl-1,4-naphthoquinone (i.e. a type II quinone) into the A1 site normally occupied by a phylloquinone [62]. Continuous wave and time-resolved EPR measurements have shown that the corresponding light-induced semiquinone radical has the same orientation as phylloquinone and shows the same distance to the P700+ primary donor. In addition, the internal electron transfer is affected in a way qualitatively consistent with the expected change in midpoint potential of the bound quinones. Notably, no β-CH2 proton coupling to the A1 semiquinone has been identified by EPR methods. This is most likely due to some distribution of the corresponding hfcct consecutive to small variations of the γ-angle [49, 63] and precluded any detailed analysis of side chain conformational changes of semiquinones bound to the PSI A1-site upon removal of the phylloquinone ring methyl group.

In the case of EcNarGHI, in addition to the ~90° rotation of the quinone side chain relative to the ring in the QD site when going from MSK to DMSK, substitution of the C2 ring methyl group by a hydrogen atom on the naphthoquinone ring is associated to a downshift of the two-electron midpoint potential of the NarGHI-bound DMK by ~30 mV with respect to the unbound species. This phenomenon was neither observed for MSKD nor for USQD [19] and reveals a ~10 fold tighter binding of DMK than DMKH2 to the QD site. Notably, varying the orientation of the quinone side-chain in our simple Im-(D)MSK model does not significantly affect the semiquinone electronic structure. This indicates that this orientation itself does not significantly influence the quinone redox properties, in contrast to that of the ubiquinone methoxy groups [64]. Therefore, the origin of this shift is most likely due to protein environment effects that have to be considered to elucidate the factors that fine-tune the DMSKD side chain conformation and redox properties. This will require further detailed experimental and theoretical investigations.
4. Conclusions

EcNarGHI Q\textsubscript{D} site stabilizes the semiquinone radical of MK and DMK via a similar short H-bond between the semiquinone O1 oxygen and the imidazole N\textsubscript{d} of the heme b\textsubscript{D} axial ligand His66 while essentially maintaining the markedly different side-chain orientations of the unbound species. This adaptability of the EcNarGHI Q\textsubscript{D} site could contribute to the metabolic flexibility of NarGHI, a key player in the energy metabolism of the bacterium upon variations of the quinone content of the Q-pool consecutive to variations of the \textit{E. coli} niche. In mammalian intestines, this niche indeed alternates between microaerobic and anaerobic, conditions in which electron flow to NarGHI via MK and DMK contributes a major colonization advantage [65, 66].

Acknowledgements

This work was supported by the A*MIDEX project MicrobioE funded by the “Investissements d’Avenir” French Government program (ANR-11-IDEX-0001-02), the CNRS “Mission pour l’interdisciplinarité” program (project “Instrumentations aux limites”), and the French EPR network (RENAIRD, IR3443). DFT calculations were performed by using computing resources from the “Centre Régional de Compétences en Modélisation Moléculaire” (CRCMM, Marseille). We thank Dr. Emilien Etienne and Dr. Guillaume Gerbaud for their assistance in the use of the Aix-Marseille EPR facility. MSE was supported by a PhD fellowship from the Lebanese Government and by the A*MIDEX programme for Aix-Marseille technological platforms. JR was supported by a CNRS/Région Provence-Alpes-Côte d’Azur PhD fellowship.

Appendix A. Supplementary data

Supplementary data to this article available.

References

