W. Peters, A. Bastos, P. Ciais, and A. Vermeulen, 2020 A historical, geographical and ecological perspective on, 2018.

, European summer drought. Phil. Trans. R. Soc. B, vol.375, 20190505.

A. Toreti, The exceptional 2018 European water seesaw calls for action on adaptation, Earth's Future, vol.7, pp.652-663, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02629352

J. Buitink, Anatomy of the 2018 agricultural drought in The Netherlands using in situ soil moisture and satellite vegetation indices, Hydrology and Earth System Sciences Discussions, vol.2020, pp.1-17, 2020.

F. Schrader, How exceptionally dry and hot conditions affect carbon fluxes in European croplands, 2020.

P. Ciais, Europe-wide reduction in primary productivity caused by the heat and drought in 2003, Nature, vol.437, pp.529-533, 2005.
URL : https://hal.archives-ouvertes.fr/insu-00373792

W. Borken, K. Savage, E. A. Davidson, and S. E. Trumbore, Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil, Glob. Change Biol, vol.12, pp.177-193, 2006.

I. A. Janssens, Europe's terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO 2 emissions, Science, vol.300, pp.1538-1542, 2003.

S. Luyssaert, The European land and inland water CO 2 , CO, CH 4 and N 2 O balance between, Biogeosciences, vol.9, pp.3357-3380, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01150807

W. Peters, Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations, Glob. Change Biol, vol.16, pp.1317-1337, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02928275

G. Monteil, The regional EUROpean atmospheric transport inversion COMparison, EUROCOM: first results on European wide terrestrial carbon fluxes for the period, Atmos. Chem. Phys. Discuss, 2006.

M. Vetter, Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models, Biogeosciences, vol.5, pp.561-583, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00330703

A. Buras, A. Rammig, and C. S. Zang, Quantifying impacts of the 2018 drought on European ecosystems in comparison to, Biogeosciences, vol.17, pp.1655-1672, 2003.

L. Samaniego, Anthropogenic warming exacerbates European soil moisture droughts, Nat. Clim. Change, vol.8, pp.421-426, 2018.

A. J. Teuling, Contrasting response of European forest and grassland energy exchange to heatwaves, Nat. Geosci, vol.3, pp.722-727, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02663686

M. Ramonet, The fingerprint of the summer 2018 drought in Europe on groundbased atmospheric CO 2 measurements, Phil. Trans. R. Soc. B, vol.375, 2020.

J. Joiner, Y. Yoshida, L. Guanter, and E. M. Middleton, New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY, Atmos. Meas. Tech, vol.9, pp.3939-3967, 2016.

G. Badgley, C. B. Field, and J. A. Berry, Canopy nearinfrared reflectance and terrestrial photosynthesis, Sci. Adv, vol.3, pp.1-6, 2017.

G. Koren, Widespread reduction in suninduced fluorescence from the Amazon during the, El Niño. Phil. Trans. R. Soc. B, vol.373, 2015.

Y. Sun, R. Fu, R. Dickinson, J. Joiner, C. Frankenberg et al., Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: insights from two contrasting extreme events, J. Geophys. Res. Biogeosci, vol.120, pp.2427-2440, 2015.

K. D. Haynes, I. T. Baker, A. S. Denning, S. Wolf, G. Wohlfahrt et al., Representing grasslands using dynamic prognostic phenology based on biological growth stages: part 2. Carbon cycling, J. Adv. Model. Earth Syst, vol.11, pp.4440-4465, 2019.

W. Peters, Increased water-use efficiency and reduced CO 2 uptake by plants during droughts at a continental scale, Nat. Geosci, vol.11, pp.744-748, 2018.

M. K. Van-der-molen, The effect of assimilating satellite-derived soil moisture data in SiBCASA on simulated carbon fluxes in Boreal Eurasia, Hydrol. Earth Syst. Sci, vol.20, pp.605-624, 2016.

E. Van-schaik, L. Killaars, N. E. Smith, G. Koren, L. Van-beek et al., Changes in surface hydrology, soil moisture and gross primary production in the Amazon during the, El Niño. Phil. Trans. R. Soc. B, vol.373, 2015.

E. H. Sutanudjaja, PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geoscient. Model Dev, vol.11, pp.2429-2453, 2018.

I. T. Van-der-laan-luijkx, The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation and global carbon balance, Geoscientific. Model Dev, vol.10, pp.2785-2800, 2001.

S. M. Quiring, Developing objective operational definitions for monitoring drought, J. Appl, 2009.

, Meteorol. Climatol, vol.48, pp.1217-1229

A. Bastos, Direct and seasonal legacy effects of the 2018 heat and drought on European ecosystem productivity, Sci. Adv, vol.6, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02881720

, Drought-2018 atmospheric CO 2 mole fraction product for 48 stations (96 sample heights) -release 2019-1 (Version 1.0). ICOS Carbon Portal, 2018.

M. Reichstein, Team & ICOS Ecosystem Thematic Centre 2019. Drought-2018 ecosystem eddy covariance flux product in FLUXNET-Archive formatrelease 2019-2 (Version 1.0), ICOS Carbon Portal, vol.11, pp.1424-1439, 2005.

C. Frankenberg, New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity, Geophys. Res. Lett, vol.38, p.17706, 2011.

C. Schaaf and Z. Wang, MCD43A1 MODIS/Terra+ Aqua BRDF/Albedo Model Parameters Daily L3 Global -500m V006. NASA EOSDIS Land Processes DAAC, 2015.

G. Badgley, L. Anderegg, J. A. Berry, and C. B. Field, Terrestrial gross primary production: using NIR V to scale from site to globe, Glob. Change Biol, vol.25, pp.3731-3740, 2019.

M. Reichstein, On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Glob. Change Biol, vol.11, pp.1424-1439, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02683280

P. J. Sellers, D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field et al., A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: model formulation, J. Clim, vol.9, pp.676-705, 1996.

E. T. Baker, L. Prihodko, A. S. Denning, M. Goulden, S. Miller et al., Seasonal drought stress in the Amazon: Reconciling models and observations, J. Geophys. Res.: Biogeosciences, vol.113, 2008.

K. D. Haynes, I. T. Baker, A. S. Denning, R. Stöckli, K. Schaefer et al., Representing grasslands using dynamic prognostic phenology based on biological growth stages: 1. Implementation in the simple biosphere model (SiB4), J. Adv. Model. Earth Syst, vol.11, pp.4423-4439, 2019.

K. Schaefer, G. J. Collatz, P. Tans, A. S. Denning, I. Baker et al., Combined simple biosphere/Carnegie-Ames-Stanford approach terrestrial carbon cycle model, J. Geophys. Res, vol.113, 2008.

E. Lokupitiya, Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands, Biogeosciences, vol.6, pp.969-986, 2009.

G. J. Collatz, M. Ribas-carbo, and J. A. Berry, Coupled photosynthesis-stomatal conductance model for leaves of C 4 plants, Funct. Plant Biol, vol.19, pp.519-538, 1992.

G. D. Farquhar, S. Von-caemmerer, and J. A. Berry, A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species, Planta, vol.149, pp.78-90, 1980.

R. Gelaro, The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), J. Clim, vol.30, pp.5419-5454, 2017.

I. R. Van-der-velde, J. B. Miller, K. Schaefer, K. A. Masarie, S. Denning et al., , 2013.

, Biosphere model simulations of interannual variability in terrestrial 13 C/ 12 C exchange, Global Biogeochem. Cycles, vol.27, pp.637-649

P. J. Lawrence and T. N. Chase, Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0), J. Geophys. Res, vol.112, 2007.

S. Sitch, Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs), Glob. Change Biol, vol.14, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02926845

Y. Yang, R. J. Donohue, and T. R. Mcvicar, Global estimation of effective plant rooting depth: implications for hydrological modeling, Water Resour. Res, vol.52, pp.8260-8276, 2016.

A. Lindroth, Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer, Phil. Trans. R. Soc. B, vol.375, 2018.

K. Haynes, I. Baker, and S. Denning, , 2020.

, Multi-laboratory compilation of atmosphericcarbon dioxide data for the period, 1957.

M. Krol, S. Houweling, B. Bregman, M. Van-den-broek, A. Segers et al., The two-way nested global chemistry-transport zoom model TM5: algorithm and applications, Atmos. Chem. Phys, vol.5, pp.417-432, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00301349

D. P. Dee, The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. R. Meteorol. Soc, vol.137, pp.553-597, 2011.

A. R. Jacobson, M. Fletcher, S. E. Gruber, N. Sarmiento, J. L. Gloor et al., A joint atmosphereocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes, Glob. Biogeochem. Cycles, vol.21, p.1019, 2007.

, Edgar -Emissions Database for Global Atmospheric Research, 2011.

I. R. Van-der-velde, J. B. Miller, K. Schaefer, G. R. Van-der-werf, M. C. Krol et al., Terrestrial cycling of 13 CO 2 by photosynthesis, respiration, and biomass burning in SiBCASA, Biogeosciences, vol.11, pp.6553-6571, 2014.

L. Giglio, J. T. Randerson, and G. R. Van-der-werf, Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4), J. Geophys. Res. Biogeo, vol.118, pp.317-328, 2013.

B. Longdoz, In preparation. Quantification of 2018 drought for European terrestrial ecosystem plots and impact on parameterisation of CO 2 fluxes and carbon allocation

S. Wolf, Warm spring reduced carbon cycle impact of the 2012 US summer drought, Proc. Natl Acad. Sci. USA 113, 2016.

. Gurney, Towards robust regional estimates of CO 2 sources and sinks using atmospheric transport models, Nature, vol.415, pp.626-630, 2002.
URL : https://hal.archives-ouvertes.fr/hal-02888447

M. Combe, J. Vilà-guerau-de-arellano, H. G. Ouwersloot, and W. Peters, Plant water-stress parameterization determines the strength of landatmosphere coupling, Agric. For. Meteorol, vol.217, pp.61-73, 2016.

D. Yin, M. L. Roderick, G. Leech, F. Sun, and Y. Huang, The contribution of reduction in evaporative cooling to higher surface air temperatures during drought, Geophys. Res. Lett, vol.41, pp.7891-7897, 2014.

D. G. Miralles, A. J. Teuling, C. C. Van-heerwaarden, V. Arellano, and J. , Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation, Nat. Geosci, vol.7, pp.345-349, 2014.

E. M. Fischer, S. I. Seneviratne, P. Vidale, D. Lüthi, and C. Schär, Soil moisture-atmosphere interactions during the 2003 European summer heat wave, J. Clim, vol.20, pp.5081-5099, 2007.

. Glace-team, Regions of strong coupling between soil moisture and precipitation, Science, vol.305, pp.1138-1140, 2004.

A. Graf, Altered energy partitioning across terrestrial ecosystems in the European drought year 2018, Phil. Trans. R. Soc. B, vol.375, 2020.

N. Kowalska, L. ?igut, M. Stojanovi?, M. Fischer, I. Kyselova et al., Analysis of floodplain forest sensitivity to drought, Phil. Trans. R. Soc. B, vol.375, 2020.

A. Angert, S. Biraud, C. Bonfils, C. C. Henning, W. Buermann et al., Drier summers cancel out the CO 2 uptake enhancement induced by warmer springs, Proc. Natl Acad. Sci. USA, vol.102, pp.823-833, 2005.

Z. Fu, Sensitivity of gross primary productivity to climatic drivers during the summer drought, Europe. Phil. Trans. R. Soc. B, vol.375, 2018.

R. L. Thompson, Changes in net ecosystem exchange over Europe during the 2018 drought based on atmospheric observations, Phil. Trans. R. Soc. B, vol.375, 2020.

P. Yang and C. Van-der-tol, Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance, Remote Sens. Environ, vol.209, pp.456-467, 2018.

Y. Zeng, G. Badgley, B. Dechant, Y. Ryu, M. Chen et al., A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence, 2019.

A. J. Turner, P. Köhler, T. S. Magney, C. Frankenberg, I. Fung et al., 2020 A double peak in the seasonality of California's photosynthesis as observed from space, Biogeosciences, vol.17, pp.405-422

R. Doughty, P. Köhler, C. Frankenberg, T. S. Magney, X. Xiao et al., 2019 TROPOMI reveals dry-season increase of solar-induced chlorophyll fluorescence in the Amazon forest, Proc. Natl Acad. Sci. USA, vol.531, 201908157.

C. Beer, Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate, Science, vol.329, pp.834-838, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00819125

L. Liu, L. Guan, and X. Liu, Directly estimating diurnal changes in GPP for C3 and C4 crops using far-red sun-induced chlorophyll fluorescence, Agric. For. Meteorol, vol.232, pp.1-9, 2017.

T. S. Magney, Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence, Proc. Natl Acad. Sci. USA, vol.116, pp.640-651, 2019.

M. Gharun, Physiological response of Swiss ecosystems to 2018 drought across plant types and elevation, Phil. Trans. R. Soc. B, vol.375, 2020.

G. Egea, A. Verhoef, and P. L. Vidale, Towards an improved and more flexible representation of water stress in coupled photosynthesis-stomatal conductance models, Agric. For. Meteorol, vol.151, pp.1370-1384, 2011.

M. Combe, A. De-wit, J. Vilà-guerau-de-arellano, M. K. Van-der-molen, V. Magliulo et al., Grain yield observations constrain cropland CO 2 fluxes over Europe, J. Geophys. Res. Biogeosci, vol.122, pp.3238-3259, 2017.

E. Lokupitiya, Carbon and energy fluxes in cropland ecosystems: a model-data comparison, Biogeochemistry, vol.129, pp.53-76, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01587478

E. Lokupitiya, Incorporation of crop phenology in simple biosphere model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands, Biogeosciences, vol.6, pp.969-986, 2009.

P. Friedlingstein, Global carbon budget 2019, Earth Syst. Sci. Data, vol.11, pp.1783-1838, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02519260