L. Agüero, D. Zaldivar-silva, L. Peña, and M. L. Dias, Alginate microparticles as oral colon drug delivery device: A review, Carbohydrate Polymers, vol.168, pp.32-43, 2017.

E. M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review, Journal of Advanced Research, vol.6, pp.105-121, 2015.

S. Akbari and T. Pirbodaghi, Microfluidic encapsulation of cells in alginate particles via an improved internal gelation approach, Microfluidics and Nanofluidics, vol.16, pp.773-777, 2014.

C. N. Baroud, F. Gallaire, and R. Dangla, Dynamics of microfluidic droplets, Lab on a Chip, vol.10, pp.2032-2045, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01020657

D. Caccavo, S. Cascone, G. Lamberti, and A. A. Barba, Hydrogels: experimental characterization and mathematical modelling of their mechanical and diffusive behaviour, Chemical Society Reviews, vol.47, pp.2357-2373, 2018.

M. Carin, D. Barthès-biesel, F. Edwards-lévy, C. Postel, and D. C. Andrei, Compression of biocompatible liquid-filled HSA-alginate capsules: Determination of the membrane mechanical properties, Biotechnology and Bioengineering, vol.82, pp.207-212, 2003.

L. W. Chan, H. Y. Lee, and P. W. Heng, Production of alginate microspheres by internal gelation using an emulsification method, International Journal of Pharmaceutics, vol.242, pp.259-262, 2002.

G. F. Christopher and S. L. Anna, Microfluidic methods for generating continuous droplet streams, Journal of Physics D: Applied Physics, vol.40, pp.319-336, 2007.

D. Menech, M. Garstecki, P. Jousse, F. Stone, and H. A. , Transition from squeezing to dripping in a microfluidic T-shaped junction, Journal of Fluid Mechanics, vol.595, pp.141-161, 2008.

K. I. Draget, Handbook of Hydrocolloids, pp.807-828, 2009.

S. Freiberg and X. X. Zhu, Polymer microspheres for controlled drug release, International Journal of Pharmaceutics, vol.282, pp.1-18, 2004.

G. Fundueanu, C. Nastruzzi, A. Carpov, J. Desbrieres, and M. Rinaudo, Physico-chemical characterization of Ca-alginate microparticles produced with different methods, Biomaterials, vol.20, pp.1427-1435, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01585454

P. Gacesa, Alginates, Carbohydrate Polymers, vol.8, pp.161-182, 1988.

G. T. Grant, E. R. Morris, D. A. Rees, P. J. Smith, and D. Thom, Biological interactions between polysaccharides and divalent cations: The egg-box model, FEBS Letters, vol.32, pp.195-198, 1973.

K. Guevorkian and J. L. Maître, Chapter 10 -Micropipette aspiration: A unique tool for exploring cell and tissue mechanics in vivo, Methods in Cell Biology, pp.187-201, 2017.

R. Haghgooie, M. Toner, and P. S. Doyle, Squishy Non-Spherical Hydrogel Microparticles, Macromolecular Rapid Communications, vol.31, pp.128-134, 2010.

A. S. Hoffman, Hydrogels for biomedical applications, Advanced Drug Delivery Reviews, vol.64, pp.18-23, 2012.

Y. Hu, Q. Wang, J. Wang, J. Zhu, H. Wang et al., Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking, Biomicrofluidics, vol.6, p.26502, 2012.

I. J. Joye and D. J. Mcclements, Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application, Current Opinion in Colloid & Interface Science, vol.19, pp.417-427, 2014.

A. Kidane, P. Guimond, T. Rob-ju, M. Sanchez, J. Gibson et al., Effects of cellulose derivatives and poly(ethylene oxide)-poly(propylene oxide) tri-block copolymers (Pluronic®surfactants) on the properties of alginate based microspheres and their interactions with phagocytic cells, Journal of Controlled Release, vol.85, pp.181-189, 2002.

R. M. Kleinberger, N. A. Burke, K. Dalnoki-veress, and H. D. Stöver, Systematic study of alginate-based microcapsules by micropipette aspiration and confocal fluorescence microscopy, Materials Science and Engineering: C, vol.33, pp.4295-4304, 2013.

B. Lee, P. Ravindra, and E. Chan, Size and Shape of Calcium Alginate Beads Produced by Extrusion Dripping, Chemical Engineering & Technology, vol.36, pp.1627-1642, 2013.

K. Y. Lee and D. J. Mooney, Alginate: Properties and biomedical applications, Progress in Polymer Science, vol.37, pp.106-126, 2012.

K. Y. Lee and S. H. Yuk, Polymeric protein delivery systems, Progress in Polymer Science, vol.32, pp.669-697, 2007.

K. Liu, H. Ding, J. Liu, Y. Chen, and X. Zhao, Shape-Controlled Production of Biodegradable Calcium Alginate Gel Microparticles Using a Novel Microfluidic Device, Langmuir, vol.22, pp.9453-9457, 2006.

J. Maitra and V. Shukla, Cross-linking in hydrogels -a review, Am J Polym Sci, vol.4, pp.25-31, 2014.

C. D. Markert, X. Guo, A. Skardal, Z. Wang, S. Bharadwaj et al., Characterizing the micro-scale elastic modulus of hydrogels for use in regenerative medicine, Journal of the Mechanical Behavior of Biomedical Materials, vol.27, pp.115-127, 2013.

T. J. Merkel, S. W. Jones, K. P. Herlihy, F. R. Kersey, A. R. Shields et al., Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles, Proceedings of the National Academy of Sciences, vol.108, p.586, 2011.

Ý. A. Mørch, I. Donati, B. L. Strand, and G. Skjåk-braek, Effect of Ca2+, Ba2+, and Sr2+ on Alginate Microbeads, Biomacromolecules, vol.7, pp.1471-1480, 2006.

C. Qiu, M. Chen, H. Yan, and H. Wu, Generation of Uniformly Sized Alginate Microparticles for Cell Encapsulation by Using a Soft-Lithography Approach, Advanced Materials, vol.19, pp.1603-1607, 2007.

K. Ren, J. Zhou, and H. Wu, Materials for Microfluidic Chip Fabrication, Accounts of Chemical Research, vol.46, pp.2396-2406, 2013.

E. Rondeau and J. J. Cooper-white, Biopolymer Microparticle and Nanoparticle Formation within a Microfluidic Device, Langmuir, vol.24, pp.6937-6945, 2008.

M. Santa-maria, H. Scher, and T. Jeoh, Microencapsulation of bioactives in cross-linked alginate matrices by spray drying, Journal of Microencapsulation, vol.29, pp.286-295, 2012.

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, Droplet based microfluidics. Reports on Progress in Physics, vol.75, p.16601, 2011.

R. Stephenson and J. Stuart, Mutual binary solubilities: water-alcohols and water-esters, Journal of Chemical and Engineering Data, vol.31, pp.56-70, 1986.

S. Sugaya, M. Yamada, and M. Seki, Production of extremely-small hydrogel microspheres by utilizing water-droplet dissolution in a polar solvent, 15th International Conference on Miniaturized Systems for Chemistry and Life Sciences. Chemical and Biological Microsystems Society ( CBMS ), pp.18-20, 2011.

D. C. Sundberg, A. P. Casassa, J. Pantazopoulos, M. R. Muscato, B. Kronberg et al., Morphology development of polymeric microparticles in aqueous dispersions. I. Thermodynamic considerations, Journal of Applied Polymer Science, vol.41, pp.1425-1442, 1990.

S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, Droplet microfluidics. Lab on a Chip, vol.8, pp.198-220, 2008.

V. Trivedi, A. Doshi, G. K. Kurup, E. Ereifej, P. J. Vandevord et al., A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening, Lab on a Chip, vol.10, pp.2433-2442, 2010.

V. Trivedi, E. S. Ereifej, A. Doshi, P. Sehgal, P. J. Vandevord et al., Microfluidic encapsulation of cells in alginate capsules for high throughput screening, Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, pp.7037-7040, 2009.

S. Utech, R. Prodanovic, A. S. Mao, R. Ostafe, D. J. Mooney et al., Microfluidic Generation of Monodisperse, Structurally Homogeneous Alginate Microgels for Cell Encapsulation and 3D Cell Culture, Advanced Healthcare Materials, vol.4, pp.1628-1633, 2015.

N. T. Uyen, Z. A. Hamid, N. X. Tram, and N. Ahmad, Fabrication of alginate microspheres for drug delivery: A review, International Journal of Biological Macromolecules, vol.153, pp.1035-1046, 2020.

N. M. Velings and M. M. Mestdagh, Physico-chemical properties of alginate gel beads, Polymer Gels and Networks, vol.3, pp.311-330, 1995.
URL : https://hal.archives-ouvertes.fr/hal-02694331

C. X. Wang, C. Cowen, Z. Zhang, and C. R. Thomas, High-speed compression of single alginate microspheres, Chemical Engineering Science, vol.60, pp.6649-6657, 2005.

J. H. Xu, S. W. Li, J. Tan, and G. S. Luo, Controllable Preparation of Monodispersed Calcium Alginate Microbeads in a Novel Microfluidic System, Chemical Engineering & Technology, vol.31, pp.1223-1226, 2008.

Q. Xu, M. Hashimoto, T. T. Dang, T. Hoare, D. S. Kohane et al., Preparation of Monodisperse Biodegradable Polymer Microparticles Using a Microfluidic Flow-Focusing Device for Controlled Drug Delivery, Small, vol.5, pp.1575-1581, 2009.

M. Zagnoni, J. Anderson, and J. M. Cooper, Hysteresis in Multiphase Microfluidics at a T-Junction, Langmuir, vol.26, pp.9416-9422, 2010.

C. Zhang, Development of a microfluidic method for the preparation of mimetic microparticles of red blood cells with controllable size and mechanical properties, 2020.
URL : https://hal.archives-ouvertes.fr/tel-02474896

C. Zhang, R. Grossier, L. Lacaria, F. Rico, N. Candoni et al., A microfluidic method generating monodispersed microparticles with controllable sizes and mechanical properties, Chemical Engineering Science, vol.211, p.115322, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02179400

H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R. M. Sullan et al., Microfluidic Production of Biopolymer Microcapsules with Controlled Morphology, Journal of the American Chemical Society, vol.128, pp.12205-12210, 2006.

H. Zhang, E. Tumarkin, R. M. Sullan, G. C. Walker, and E. Kumacheva, Exploring Microfluidic Routes to Microgels of Biological Polymers, Macromolecular Rapid Communications, vol.28, pp.527-538, 2007.

S. Zhang, C. Guivier-curien, S. Veesler, and N. Candoni, Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics, Chemical Engineering Science, vol.138, pp.128-139, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01278233

P. Zhu and L. Wang, Passive and active droplet generation with microfluidics: a review, Lab on a Chip, vol.17, pp.34-75, 2017.