G. Brancolini, L. Bellucci, M. C. Maschio, R. Di-felice, and S. Corni, The interaction of peptides and proteins with nanostructures surfaces: a challenge for nanoscience, Current Opinion in Colloid & Interface Science, vol.41, pp.86-94, 2019.

S. A. Bhakta, E. Evans, T. E. Benavidez, and C. D. Garcia, Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review, Anal. Chim. Acta, vol.872, pp.7-25, 2015.

F. Oteri, A. Ciaccafava, A. De-poulpiquet, M. Baaden, E. Lojou et al., The weak, fluctuating, dipole moment of membrane-bound hydrogenase from Aquifex aeolicus accounts for its adaptability to charged electrodes, Phys. Chem. Chem. Phys, vol.2014, issue.23, pp.11318-11340
URL : https://hal.archives-ouvertes.fr/hal-01493492

V. Hitaishi, R. Clement, N. Bourassin, M. Baaden, A. De-poulpiquet et al., Controlling Redox Enzyme Orientation at Planar Electrodes. Catalysts, vol.8, p.192, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01793660

M. Rabe, D. Verdes, and S. Seeger, Understanding protein adsorption phenomena at solid surfaces

, Adv. Colloid Interface Sci, vol.162, issue.1-2, pp.87-106, 2011.

P. A. Mulheran, D. J. Connell, and K. Kubiak-ossowska, Steering protein adsorption at charged surfaces: electric fields and ionic screening, Rsc Adv, vol.6, issue.77, pp.73709-73716, 2016.

K. Kubiak-ossowska, B. Jachimska, M. Al-qaraghuli, and P. A. Mulheran, Protein interactions with negatively charged inorganic surfaces, Current Opinion in Colloid & Interface Science, vol.41, pp.104-117, 2019.

S. Y. Jiang and Z. Q. Cao, Ultralow-Fouling, Functionalizable, and Hydrolyzable Zwitterionic Materials and Their Derivatives for Biological Applications, Advanced Materials, vol.22, issue.9, pp.920-932, 2010.

L. Su, Y. Li, Y. Liu, Y. An, and L. Shi, Recent Advances and Future Prospects on Adaptive Biomaterials for Antimicrobial Applications, vol.19, p.1900289, 2019.

T. Wei, Q. Yu, and H. Chen, Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way, Advanced Healthcare Materials, vol.8, issue.3, 2019.

A. J. Zhang, Y. Xie, and J. Zhou, Experimental Control and Characterization of Protein Orientation on Surfaces, Chemistry, vol.21, pp.1408-1417, 2009.

C. Rodriguez-quijada, M. Sanchez-purra, H. De-puig, and K. Hamad-schifferli, Physical Properties of Biomolecules at the Nanomaterial Interface, J Phys Chem B, issue.11, pp.2827-2840, 2018.

F. Oteri, M. Baaden, E. Lojou, and S. Sacquin-mora, Multiscale simulations give insight into the hydrogen in and out pathways of [NiFe]-hydrogenases from Aquifex aeolicus and Desulfovibrio fructosovorans, J Phys Chem B, issue.48, pp.13800-13811, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01084622

G. Brancolini and V. Tozzini, Multiscale modeling of proteins interaction with functionalized nanoparticles, Current Opinion in Colloid & Interface Science, vol.41, pp.66-73, 2019.

D. C. Malaspina, L. Perez-fuentes, C. Drummond, D. Bastos-gonzalez, and J. Faraudo, Proteinsurface interactions at the nanoscale: Atomistic simulations with implicit solvent models, Current Opinion in Colloid & Interface Science, vol.41, pp.40-49, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01962389

R. A. Latour, Molecular simulation of protein-surface interactions: benefits, problems, solutions, and future directions, Biointerphases, vol.3, issue.3, pp.2-12, 2008.

M. Ozboyaci, D. B. Kokh, S. Corni, and R. C. Wade, Modeling and simulation of protein-surface interactions: achievements and challenges, Q. Rev. Biophys, p.4, 2016.

X. B. Quan, J. Liu, and J. Zhou, Multiscale modeling and simulations of protein adsorption: progresses and perspectives, Current Opinion in Colloid & Interface Science, vol.41, pp.74-85, 2019.

M. Bellion, L. Santen, H. Mantz, H. Haehl, A. Quinn et al., Protein adsorption on tailored substrates: long-range forces and conformational changes, Journal of Physics-Condensed Matter, issue.40, p.20, 2008.

F. Secundo, Conformational changes of enzymes upon immobilisation, Chem. Soc. Rev, vol.42, issue.15, pp.6250-61, 2013.

D. F. Marruecos, D. K. Schwartz, and J. L. Kaar, Impact of surface interactions on protein conformation, Current Opinion in Colloid & Interface Science, vol.38, pp.45-55, 2018.

J. M. Bolivar and B. Nidetzky, On the relationship between structure and catalytic effectiveness in solid surface-immobilized enzymes: Advances in methodology and the quest for a single-molecule perspective, Biochim Biophys Acta Proteins Proteom, vol.2020, issue.2, p.140333

C. Micheletti, Comparing proteins by their internal dynamics: exploring structure-function relationships beyond static structural alignments, Phys Life Rev, vol.10, issue.1, pp.1-26, 2013.

M. Orozco, A theoretical view of protein dynamics, Chem. Soc. Rev, vol.43, issue.14, pp.5051-66, 2014.

S. Sacquin-mora, Motions and mechanics: investigating conformational transitions in multidomain proteins with coarse-grain simulations, Mol. Simul, vol.40, issue.1-3, pp.229-236, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01498044

S. Sacquin-mora, Bridging Enzymatic Structure Function via Mechanics: A Coarse-Grain Approach, Methods Enzymol, vol.578, pp.227-275, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01451158

S. Sacquin-mora, Mechanical variations in proteins with large-scale motions highlight the formation of structural locks, J Struct Biol, vol.203, issue.3, pp.195-204, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104314

M. M. Tirion, Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis, Phys. Rev. Lett, vol.77, issue.9, pp.1905-1908, 1996.

I. Bahar, A. R. Atilgan, and B. Erman, Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential, Folding & design, vol.1997, issue.3, pp.173-81

V. Tozzini, Coarse-grained models for proteins, Curr. Opin. Struct. Biol, vol.15, issue.2, pp.144-50, 2005.

M. Zacharias, Protein-protein docking with a reduced protein model accounting for side-chain flexibility, Protein Sci, vol.12, issue.6, pp.1271-82, 2003.

K. Hinsen, A. Thomas, and M. J. Field, Analysis of domain motions in large proteins, Proteins: Struct. Funct. Genet, vol.34, issue.3, pp.369-82, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02159761

A. R. Atilgan, S. R. Durell, R. L. Jernigan, M. C. Demirel, O. Keskin et al., Anisotropy of fluctuation dynamics of proteins with an elastic network model, Biophys. J, vol.80, issue.1, pp.505-520, 2001.

F. Tama, W. Wriggers, and C. L. Brooks, Exploring global distortions of biological macromolecules and assemblies from low-resolution structural information and elastic network theory, J. Mol. Biol, vol.3, issue.2, pp.297-305, 2002.

L. Yang, G. Song, A. Carriquiry, and R. L. Jernigan, Close correspondence between the motions from principal component analysis of multiple HIV-1 protease structures and elastic network modes, Structure, vol.16, issue.2, pp.321-330, 2008.

L. Yang, G. Song, and R. L. Jernigan, Protein elastic network models and the ranges of cooperativity, Proc. Nat. Acad. of Sci, vol.106, pp.12347-12352, 2009.

E. Fuglebakk, S. P. Tiwari, and N. Reuter, Comparing the intrinsic dynamics of multiple protein structures using elastic network models, Biochim. Biophys. Acta, issue.5, pp.911-922, 2015.

J. R. Lopez-blanco and P. Chacon, New generation of elastic network models, Curr. Opin. Struct. Biol, vol.37, pp.46-53, 2016.

S. Sacquin-mora and R. Lavery, Investigating the local flexibility of functional residues in hemoproteins, Biophys. J, vol.90, issue.8, pp.2706-2723, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00313391

S. Sacquin-mora, E. Laforet, and R. Lavery, Locating the active sites of enzymes using mechanical properties, Proteins, vol.67, issue.2, pp.350-359, 2007.

D. L. Ermak and J. A. Mccammon, Brownian dynamics with hydrodynamic interactions, J. Chem. Phys, vol.69, pp.1352-1360, 1978.

R. W. Pastor, R. Venable, and M. Karplus, Brownian dynamics simulation of a lipid chain in a membrane bilayer, J. Chem. Phys, vol.89, pp.1112-1127, 1988.

S. Sacquin-mora and R. Lavery, Modeling the mechanical response of proteins to anisotropic deformation, Chemphyschem, vol.10, issue.1, pp.115-123, 2009.

S. Sacquin-mora, O. Delalande, and M. Baaden, Functional modes and residue flexibility control the anisotropic response of guanylate kinase to mechanical stress, Biophys. J, issue.10, pp.3412-3421, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00602505

A. E. Garcia, Large-amplitude nonlinear motions in proteins, Phys. Rev. Lett, issue.17, pp.2696-2699, 1992.

A. Amadei, A. B. Linssen, and H. J. Berendsen, Essential dynamics of proteins, Proteins, vol.17, issue.4, pp.412-425, 1993.

A. Amadei, A. B. Linssen, B. L. Degroot, D. M. Vanaalten, and H. J. Berendsen, An efficient method for sampling the essential subspace of proteins, J. Biomol. Struct. Dyn, vol.13, issue.4, pp.615-625, 1996.

H. J. Berendsen, D. Vanderspoel, and R. Vandrunen, GROMACS -A message-passing parallel molecular-dynamics implementation, Comput. Phys. Commun, vol.91, issue.1-3, pp.43-56, 1995.

E. Lindahl, B. Hess, and D. Van-der-spoel, 0: a package for molecular simulation and trajectory analysis, J. Mol. Model, vol.7, issue.8, pp.306-317, 2001.

S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar et al., 5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, vol.2013, issue.7, pp.845-54

S. Tsujimura, B. Tatsumi, J. Ogawa, S. Shimizu, K. Kano et al., Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2,2 '-azinobis (3-ethylbenzothiazolin-6-sulfonate) as an electron transfer mediator, J. Electroanal. Chem, vol.496, issue.1-2, pp.69-75, 2001.

I. Mazurenko, X. Wang, A. De-poulpiquet, and E. Lojou, H-2/O-2 enzymatic fuel cells: from proof-of-concept to powerful devices, Sustainable Energy & Fuels, vol.2017, issue.7, pp.1475-1501
URL : https://hal.archives-ouvertes.fr/hal-01552073

K. Mizutani, M. Toyoda, K. Sagara, N. Takahashi, A. Sato et al., X-ray analysis of bilirubin oxidase from Myrothecium verrucaria at 2.3 A resolution using a twinned crystal, Acta crystallographica. Section F, Structural biology and crystallization communications, vol.2010, pp.765-70

J. A. Cracknell, T. P. Mcnamara, E. D. Lowe, and C. F. Blanford, Bilirubin oxidase from Myrothecium verrucaria: X-ray determination of the complete crystal structure and a rational surface modification for enhanced electrocatalytic O2 reduction, Dalton Trans, vol.40, issue.25, pp.6668-75, 2011.

S. Yang, J. Liu, X. Quan, and J. Zhou, Bilirubin Oxidase Adsorption onto Charged Self-Assembled Monolayers: Insights from Multiscale Simulations, Langmuir, vol.34, issue.33, pp.9818-9828, 2018.

V. P. Hitaishi, I. Mazurenko, M. Harb, R. Clement, M. Taris et al., Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis, Acs Catalysis, vol.8, issue.12, pp.12004-12014, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01994370

J. F. Smalley, S. W. Feldberg, C. E. Chidsey, M. R. Linford, M. D. Newton et al., J. Phys. Chem, issue.35, pp.13141-13149, 1995.

S. Sacquin-mora, P. Sebban, V. Derrien, B. Frick, R. Lavery et al., Probing the flexibility of the bacterial reaction center: the wild-type protein is more rigid than two site-specific mutants, Biochemistry, vol.46, issue.51, pp.14960-14968, 2007.

F. Francia, M. Malferrari, S. Sacquin-mora, and G. Venturoli, Charge recombination kinetics and protein dynamics in wild type and carotenoid-less bacterial reaction centers: studies in trehalose glasses, J Phys Chem B, issue.30, pp.10389-98, 2009.

S. P. Cullen, X. Liu, I. C. Mandel, F. J. Himpsel, and P. Gopalan, Polymeric brushes as functional templates for immobilizing ribonuclease A: study of binding kinetics and activity, Langmuir, vol.24, issue.3, pp.913-933, 2008.

S. Jordaan, O. A. Akinrinmade, T. Nachreiner, C. Cremer, K. Naran et al., Updates in the Development of ImmunoRNases for the Selective Killing of Tumor Cells, Biomedicines, vol.6, issue.1, 2018.

Y. Wei, A. A. Thyparambil, Y. Wu, and R. A. Latour, Adsorption-induced changes in ribonuclease A structure and enzymatic activity on solid surfaces, Langmuir, vol.30, issue.49, pp.14849-58, 2014.

J. Liu, G. Yu, and J. Zhou, Ribonuclease A adsorption onto charged self-assembled monolayers: A multiscale simulation study, Chem. Eng. Sci, vol.121, pp.331-339, 2015.

C. Camilloni, P. Robustelli, A. De-simone, A. Cavalli, and M. Vendruscolo, Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts, J. Am. Chem. Soc, vol.2012, issue.9, pp.3968-71

S. Sacquin-mora, Fold and flexibility: what can proteins' mechanical properties tell us about their folding nucleus, Journal of the Royal Society, Interface / the Royal Society, vol.2015, issue.112, 20150876.
URL : https://hal.archives-ouvertes.fr/hal-01451165

L. Shen, M. Schroeder, T. L. Ogorzalek, P. Yang, F. G. Wu et al., Surface orientation control of site-specifically immobilized nitro-reductase (NfsB), Langmuir, vol.30, issue.20, pp.5930-5938, 2014.

M. M. Schroeder, Q. Wang, S. Badieyan, Z. Chen, and E. N. Marsh, Effect of Surface Crowding and Surface Hydrophilicity on the Activity, Stability and Molecular Orientation of a Covalently Tethered Enzyme, Langmuir, vol.2017, issue.28, pp.7152-7159

D. F. Kienle, R. M. Falatach, J. L. Kaar, and D. K. Schwartz, Correlating Structural and Functional Heterogeneity of Immobilized Enzymes, ACS, vol.12, issue.8, pp.8091-8103, 2018.

X. Zou, S. Wei, S. Badieyan, M. Schroeder, J. Jasensky et al., Investigating the Effect of Two-Point Surface Attachment on Enzyme Stability and Activity, J. Am. Chem. Soc, vol.140, issue.48, pp.16560-16569, 2018.

J. S. Weltz, D. F. Kienle, D. K. Schwartz, and J. L. Kaar,

, Multipoint Covalent Immobilization Leads to Stability-Activity Trade-off, J. Am. Chem. Soc, vol.2020, issue.7, pp.3463-3471

W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, J. Mol. Graph, vol.14, issue.1, pp.27-35, 1996.