I. Porvaznik, I. Solovic, and J. Mokry, Non-Tuberculous Mycobacteria: Classification, Diagnostics, and Therapy, Adv Exp Med Biol, vol.944, pp.19-25, 2017.

T. A. Claeys and R. T. Robinson, The many lives of nontuberculous mycobacteria, J Bacteriol, 2018.

M. R. Lee, W. H. Sheng, C. C. Hung, C. J. Yu, L. N. Lee et al., Mycobacterium abscessus Complex Infections in Humans, Emerg Infect Dis, vol.21, issue.9, pp.1638-1684, 2015.

S. Luthra, A. Rominski, and P. Sander, The Role of Antibiotic-Target-Modifying and Antibiotic-Modifying Enzymes in Mycobacterium abscessus Drug Resistance, Front Microbiol, vol.9, 2018.

B. A. Brown-elliott, K. A. Nash, and R. J. Wallace, Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria, Clin Microbiol Rev, vol.25, issue.3, pp.545-82, 2012.

E. Catherinot, J. Clarissou, E. G. Ripoll, F. Emile, J. F. Daffe et al., Hypervirulence of a rough variant of the Mycobacterium abscessus type strain, Infect Immun, vol.75, issue.2, p.17145951, 2007.

S. T. Howard, E. Rhoades, J. Recht, X. Pang, A. Alsup et al., Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype, Microbiology, vol.152, pp.1581-90, 2006.

A. Pawlik, G. Garnier, M. Orgeur, P. Tong, A. Lohan et al., Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus, Mol Microbiol, vol.90, issue.3, pp.612-641, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-02618774

R. A. Floto, K. N. Olivier, L. Saiman, C. L. Daley, J. L. Herrmann et al., US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis: executive summary, Thorax, vol.71, issue.1, pp.88-90, 2016.

K. A. Nash, B. A. Brown-elliott, and W. Rj, A novel gene, erm(41), confers inducible macrolide resistance to clinical isolates of Mycobacterium abscessus but is absent from Mycobacterium chelonae. Antimicrob Agents Chemother, vol.53, pp.1367-76, 2009.

S. Bastian, N. Veziris, A. L. Roux, F. Brossier, J. L. Gaillard et al., Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing, Antimicrob Agents Chemother, vol.55, issue.2, 2011.

P. C. Nguyen, V. Delorme, A. Bénarouche, A. Guy, V. Landry et al., Oxadiazolone derivatives, new promising multi-target inhibitors against M. tuberculosis, vol.81, pp.414-438, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875577

P. C. Nguyen, V. Delorme, A. Bénarouche, B. P. Martin, R. Paudel et al., Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis, Scientific Reports, vol.7, issue.1, p.28924204, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01791688

P. C. Nguyen, A. Madani, P. Santucci, B. P. Martin, R. R. Paudel et al., Cyclophostin and Cyclipostins analogs, new promising molecules to treat mycobacterial-related diseases, Int J Antimicrob Agents, vol.51, pp.651-655, 2018.

J. C. Palomino, A. Martin, M. Camacho, H. Guerra, J. Swings et al., Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis, Antimicrob Agents Chemother, vol.46, issue.8, pp.2720-2722, 2002.

J. Rybniker, A. Vocat, C. Sala, P. Busso, F. Pojer et al., Lansoprazole is an antituberculous prodrug targeting cytochrome bc1, Nat Commun, vol.6, p.7659, 2015.

R. Felix, C. Gupta, R. Geden, S. Roberts, J. Winder et al., Selective Killing of Dormant Mycobacterium tuberculosis by Marine Natural Products, Antimicrob Agents Chemother, vol.61, issue.8, pp.743-760, 2017.

W. Strober, Trypan blue exclusion test of cell viability, Curr Protoc Immunol, vol.3, issue.1, 2001.

A. Shevchenko, M. Wilm, O. Vorm, and M. Mann, Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels, Anal Chem, vol.68, issue.5, pp.850-858, 1996.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nat Biotechnol, vol.26, issue.12, pp.1367-72, 2008.

J. A. Vizcaino, E. W. Deutsch, R. Wang, A. Csordas, F. Reisinger et al., ProteomeXchange provides globally coordinated proteomics data submission and dissemination, Nat Biotechnol, vol.32, issue.3, pp.223-229, 2014.

A. Viljoen, A. V. Gutierrez, C. Dupont, E. Ghigo, and L. Kremer, A Simple and Rapid Gene Disruption Strategy in Mycobacterium abscessus: On the Design and Application of Glycopeptidolipid Mutants, Front Cell Infect Microbiol, vol.8, p.69, 2018.

J. Jeong, H. Yim, J. Ryu, H. S. Lee, J. Lee et al., One-Step Sequence-and Ligation-Independent Cloning as a Rapid and Versatile Cloning Method for Functional Genomics Studies, Appl Environ Microbiol, vol.78, issue.15, pp.5440-5443, 2012.

A. Viljoen, M. Richard, P. C. Nguyen, P. Fourquet, L. Camoin et al., Cyclipostins and Cyclophostin analogs inhibit the antigen 85C from Mycobacterium tuberculosis both in vitro and in vivo, J Biol Chem, vol.293, issue.8, pp.2755-69, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01770061

A. Madani, J. N. Ridenour, B. P. Martin, R. R. Paudel, A. Basir et al., Cyclipostins and Cyclophostin Analogues as Multitarget Inhibitors That Impair Growth of Mycobacterium abscessus, ACS Infect Dis, vol.5, issue.9, pp.1597-608, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02276160

D. Hawke and P. Yuan, S-Pyridylethylation of cystine residues, Applied Biosystems Bulletin, vol.28, 1987.

S. Singh, N. Bouzinbi, V. Chaturvedi, S. Godreuil, and L. Kremer, In vitro evaluation of a new drug combination against clinical isolates belonging to the Mycobacterium abscessus complex, Clin Microbiol Infect, vol.20, issue.12, pp.1124-1131, 2014.

R. Nessar, E. Cambau, J. M. Reyrat, A. Murray, and B. Gicquel, Mycobacterium abscessus: a new antibiotic nightmare, J Antimicrob Chemother, vol.67, issue.4, pp.810-818, 2012.

A. Bernut, J. L. Herrmann, K. Kissa, J. F. Dubremetz, J. L. Gaillard et al., Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation, Proceedings of the National Academy of Sciences of the United States of America, vol.111, issue.10, pp.943-52, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02088315

M. D. Johansen, J. L. Herrmann, and L. Kremer, Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus, Nat Rev Microbiol, 2020.
URL : https://hal.archives-ouvertes.fr/inserm-02494720

A. L. Lefebvre, L. Moigne, V. Bernut, A. Veckerle, C. Compain et al., Inhibition of the beta-Lactamase Bla Mab by Avibactam Improves the In Vitro and In Vivo Efficacy of Imipenem against Mycobacterium abscessus, Antimicrob Agents Chemother, vol.61, issue.4, pp.2440-2456, 2017.

E. Le-run, M. Arthur, and J. L. Mainardi, Vitro and Intracellular Activity of Imipenem Combined with Tedizolid, Rifabutin, and Avibactam against Mycobacterium abscessus, vol.63, pp.1915-1933, 2019.

T. Christophe, M. Jackson, H. K. Jeon, D. Fenistein, M. Contreras-dominguez et al., High content screening identifies decaprenyl-phosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors, PLoS Pathog, vol.5, issue.10, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02902018

M. S. Ravindran, S. P. Rao, X. Cheng, A. Shukla, A. Cazenave-gassiot et al., Targeting Lipid Esterases in Mycobacteria Grown Under Different Physiological Conditions Using Activity-based Profiling with Tetrahydrolipstatin (THL), Mol Cell Proteomics, vol.13, issue.2, pp.435-483, 2014.

K. R. Tallman, S. R. Levine, and K. E. Beatty, Small Molecule Probes Reveal Esterases with Persistent Activity in Dormant and Reactivating Mycobacterium tuberculosis, ACS Infect Dis, vol.2, issue.12, pp.936-980, 2016.

J. Lehmann, T. Y. Cheng, A. Aggarwal, A. S. Park, E. Zeiler et al., An Antibacterial beta-Lactone Kills Mycobacterium tuberculosis by Disrupting Mycolic Acid Biosynthesis, Angew Chem Int Ed Engl, vol.57, issue.1, pp.348-53, 2018.

J. Lehmann, J. Vomacka, K. Esser, M. Nodwell, K. Kolbe et al., Human lysosomal acid lipase inhibitor lalistat impairs Mycobacterium tuberculosis growth by targeting bacterial hydrolases, Med-ChemComm, vol.7, pp.1797-801, 2016.

E. Catherinot, A. L. Roux, E. Macheras, D. Hubert, M. Matmar et al., Acute respiratory failure involving an R variant of Mycobacterium abscessus, J Clin Microbiol, vol.47, issue.1, pp.271-275, 2008.

E. V. Koonin, P. Orthologs, and E. Genomics, Annu Rev Genet, vol.39, issue.1, pp.309-347, 2005.

L. Dedieu, C. Serveau-avesque, L. Kremer, and S. Canaan, Mycobacterial lipolytic enzymes: a gold mine for tuberculosis research, Biochimie, vol.95, issue.1, pp.66-73, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02646757

G. Johnson, The alpha/beta Hydrolase Fold Proteins of Mycobacterium tuberculosis, with Reference to their Contribution to Virulence, Curr Protein Pept Sci, vol.18, issue.3, pp.190-210, 2017.

V. Delorme, S. V. Diomandé, L. Dedieu, J. Cavalier, F. Carrière et al., MmPPOX Inhibits Mycobacterium tuberculosis Lipolytic Enzymes Belonging to the Hormone-Sensitive Lipase Family and Alters Mycobacterial Growth, PLoS ONE, vol.7, issue.9, p.46493, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02646386

J. C. Sacchettini and D. R. Ronning, The mycobacterial antigens 85 complex-from structure to function: response, Trends Microbiol, vol.8, issue.10, pp.1843-1849, 2000.

J. E. Griffin, J. D. Gawronski, M. A. Dejesus, T. R. Ioerger, B. J. Akerley et al., High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism, PLoS Pathog, vol.7, issue.9, 2011.

C. M. Sassetti, D. H. Boyd, and E. J. Rubin, Genes required for mycobacterial growth defined by high density mutagenesis, Mol Microbiol, vol.48, issue.1, p.12657046, 2003.

T. Warrier, M. Tropis, J. Werngren, A. Diehl, M. Gengenbacher et al., Antigen 85C inhibition restricts Mycobacterium tuberculosis growth through disruption of cord factor biosynthesis, Antimicrob Agents Chemother, vol.56, issue.4, 2012.

I. Caire-brandli, A. Papadopoulos, W. Malaga, D. Marais, S. Canaan et al., Reversible lipid accumulation and associated division arrest of Mycobacterium avium in lipoprotein-induced foamy macrophages may resemble key events during latency and reactivation of tuberculosis, Infect Immun, vol.82, issue.2, pp.476-90, 2014.

P. Santucci, F. Bouzid, N. Smichi, I. Poncin, L. Kremer et al., Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis, Front Cell Infect Microbiol, vol.6, p.122, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455789

P. Santucci, S. Diomandé, I. Poncin, L. Alibaud, A. Viljoen et al., Delineating the physiological roles of the PE and catalytic domain of LipY in lipid consumption in mycobacteria-infected foamy macrophages, Infect Immun, vol.86, issue.9, pp.394-412, 2018.

P. Santucci, M. D. Johansen, V. Point, I. Poncin, A. Viljoen et al., Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria, Scientific Reports, vol.9, issue.1, p.31209261, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02276153

C. Deb, J. Daniel, T. D. Sirakova, B. Abomoelak, V. S. Dubey et al., A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis, J Biol Chem, vol.281, issue.7, pp.3866-75, 2005.

K. C. Mishra, C. De-chastellier, Y. Narayana, P. Bifani, A. K. Brown et al., Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY, Infect Immun, vol.76, issue.1, pp.127-167, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00202869