Magnetic anisotropy of one-dimensional Co nanostructures - Archive ouverte HAL Access content directly
Journal Articles Physical Review B Year : 2020

Magnetic anisotropy of one-dimensional Co nanostructures

(1) , (1) , (1) , (1) , (2) , (1) , (1)
1
2

Abstract

We report a combined scanning tunneling microscopy and x-ray magnetic circular dichroism study to investigate the structural properties and magnetic behavior of a Co ultrathin film composed of dimer nanolines. These Co nanolines, ∼6 nm in length, are grown on a Si nanotemplate composed of nanoribbons self-organized on Ag(110). The first two Co layers present a weak magnetic response while upper Co layers exhibit an enhanced magnetization. Orbital and spin moments are experimentally determined. We show that an in-plane magnetization is favored and the magnetic anisotropy energy associated with the directions parallel and perpendicular to the nanolines are measured. The Co ultrathin film is shown to behave as a superparamagnetic system composed of one-dimensional segments containing each ∼170 ferromagnetically coupled Co atoms, with a blocking temperature estimated to be between 20 and 40 K. Our set of experiments allows for a comprehensive description of the magnetic behavior of the Co nanoline ultrathin film grown on a functionalized metallic substrate.
Fichier principal
Vignette du fichier
Daher Mansour et al PRB_submitted_revised_2_final.pdf (1.21 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02960045 , version 1 (15-12-2020)

Identifiers

Cite

Michel Daher Mansour, Romain Parret, F. Cheynis, Matthieu Petit, Fadi Choueikani, et al.. Magnetic anisotropy of one-dimensional Co nanostructures. Physical Review B, 2020, 102 (15), pp.155403. ⟨10.1103/PhysRevB.102.155403⟩. ⟨hal-02960045⟩
92 View
106 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More