D. A. King, ENVIRONMENT: Climate Change Science: Adapt, Mitigate, or Ignore?, Science, vol.303, issue.5655, pp.176-177, 2004.

J. A. Turner, Sustainable Hydrogen Production, Science, vol.305, issue.5686, pp.972-974, 2004.

P. P. Edwards, V. L. Kuznetsov, W. I. David, and N. P. Brandon, Hydrogen and fuel cells: Towards a sustainable energy future, Energy Policy, vol.36, issue.12, pp.4356-4362, 2008.

J. R. Mckone, S. C. Marinescu, B. S. Brunschwig, J. R. Winkler, and H. B. Gray, Earth-abundant hydrogen evolution electrocatalysts, Chem. Sci., vol.5, issue.3, pp.865-878, 2014.

A. Volbeda, M. Charon, C. Piras, E. C. Hatchikian, M. Frey et al., Crystal structure of the nickel?iron hydrogenase from Desulfovibrio gigas, Nature, vol.373, issue.6515, pp.580-587, 1995.

A. Volbeda, E. Garcin, C. Piras, A. L. De-lacey, V. M. Fernandez et al., Structure of the [NiFe] Hydrogenase Active Site: Evidence for Biologically Uncommon Fe Ligands?, Journal of the American Chemical Society, vol.118, issue.51, pp.12989-12996, 1996.

R. P. Happe, W. Roseboom, A. J. Pierik, S. P. Albracht, and K. A. Bagley, Biological activition of hydrogen, Nature, vol.385, issue.6612, pp.126-126, 1997.

D. Sirbu, T. Straistari, and A. C. Benniston, Hydrogenases: From Biomimetic to Bioinspired Models, Series on Chemistry, Energy and the Environment, pp.89-121, 2019.

T. B. Rauchfuss, Diiron Azadithiolates as Models for the [FeFe]-Hydrogenase Active Site and Paradigm for the Role of the Second Coordination Sphere, Accounts of Chemical Research, vol.48, issue.7, pp.2107-2116, 2015.

M. Y. Darensbourg, E. J. Lyon, and J. J. Smee, The bio-organometallic chemistry of active site iron in hydrogenases, Coordination Chemistry Reviews, vol.206-207, pp.533-561, 2000.

Z. Li, Y. Ohki, and K. Tatsumi, Dithiolato-Bridged Dinuclear Iron?Nickel Complexes [Fe(CO)2(CN)2(?-SCH2CH2CH2S)Ni(S2CNR2)]-Modeling the Active Site of [NiFe] Hydrogenase, Journal of the American Chemical Society, vol.127, issue.25, pp.8950-8951, 2005.

D. Brazzolotto, M. Gennari, N. Queyriaux, T. R. Simmons, J. Pécaut et al., Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase, Nature Chemistry, vol.8, issue.11, pp.1054-1060, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386604

S. Canaguier, M. Field, Y. Oudart, J. Pécaut, M. Fontecave et al., A structural and functional mimic of the active site of NiFe hydrogenases, Chemical Communications, vol.46, issue.32, p.5876, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01069161

D. Basu, T. S. Bailey, N. Lalaoui, C. P. Richers, T. J. Woods et al., Synthetic Designs and Structural Investigations of Biomimetic Ni?Fe Thiolates, Inorganic Chemistry, vol.58, issue.4, pp.2430-2443, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02485811

N. Coutard, N. Kaeffer, and V. Artero, Molecular engineered nanomaterials for catalytic hydrogen evolution and oxidation, Chemical Communications, vol.52, issue.95, pp.13728-13748, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01385443

A. C. Marr, D. J. Spencer, and M. Schröder, Structural mimics for the active site of [NiFe] hydrogenase, Coordination Chemistry Reviews, vol.219-221, pp.1055-1074, 2001.

T. R. Simmons, G. Berggren, M. Bacchi, M. Fontecave, and V. Artero, Mimicking hydrogenases: From biomimetics to artificial enzymes, Coordination Chemistry Reviews, vol.270-271, pp.127-150, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01069167

E. Bouwman and J. Reedijk, Structural and functional models related to the nickel hydrogenases, Coordination Chemistry Reviews, vol.249, issue.15-16, pp.1555-1581, 2005.

T. Yamamura, H. Miyamae, Y. Katayama, and Y. Sasaki, NICKEL THIOLATES. SIMPLE SYNTHESIS, THE BEHAVIOR UPON PROTOLYSIS AND OXIDATION POTENTIALS, Chemistry Letters, vol.14, issue.3, pp.269-272, 1985.

D. Sellmann, S. Funfgelder, G. Pohlmann, F. Knoch, and M. Moll, Transition-metal complexes with sulfur ligands. 55. Nickel complexes with thiolato-thioether ligands including nitrogen and oxygen donors in S6, S5, OS4, NS4, and S4 donor sets. Syntheses, properties, and x-ray structure determinations of [Ni('S6')], [Ni('S5')], [Ni('OS4')]2, [Ni('S4-C5')]2, and [Ni('S4-C3')], Inorganic Chemistry, vol.29, issue.23, pp.4772-4778, 1990.

S. Kaur-ghumaan and M. Stein, [NiFe] hydrogenases: how close do structural and functional mimics approach the active site?, Dalton Transactions, vol.43, issue.25, p.9392, 2014.

W. Lubitz, H. Ogata, O. Rüdiger, and E. Reijerse, Hydrogenases, Chemical Reviews, vol.114, issue.8, pp.4081-4148, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00869039

H. Tang and M. B. Hall, Biomimetics of [NiFe]-Hydrogenase: Nickel- or Iron-Centered Proton Reduction Catalysis?, Journal of the American Chemical Society, vol.139, issue.49, pp.18065-18070, 2017.

D. Brazzolotto, L. Wang, H. Tang, M. Gennari, N. Queyriaux et al., Tuning Reactivity of Bioinspired [NiFe]-Hydrogenase Models by Ligand Design and Modeling the CO Inhibition Process, ACS Catalysis, vol.8, issue.11, pp.10658-10667, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01938358

G. M. Chambers, M. T. Huynh, Y. Li, S. Hammes-schiffer, T. B. Rauchfuss et al., Models of the Ni-L and Ni-SIa States of the [NiFe]-Hydrogenase Active Site, Inorganic Chemistry, vol.55, issue.2, pp.419-431, 2015.

S. Ding, P. Ghosh, A. M. Lunsford, N. Wang, N. Bhuvanesh et al., Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H2 Production Electrocatalysts, Journal of the American Chemical Society, vol.138, issue.39, pp.12920-12927, 2016.

S. Ding, P. Ghosh, A. M. Lunsford, N. Wang, N. Bhuvanesh et al., Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H2 Production Electrocatalysts, Journal of the American Chemical Society, vol.138, issue.39, pp.12920-12927, 2016.

S. Ding, P. Ghosh, M. Y. Darensbourg, and M. B. Hall, Interplay of hemilability and redox activity in models of hydrogenase active sites, Proceedings of the National Academy of Sciences, vol.114, issue.46, pp.E9775-E9782, 2017.

M. E. Ahmed and A. Dey, Recent developments in bioinspired modelling of [NiFe]- and [FeFe]-hydrogenases, Current Opinion in Electrochemistry, vol.15, pp.155-164, 2019.

D. Schilter, J. M. Camara, M. T. Huynh, S. Hammes-schiffer, and T. B. Rauchfuss, Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides, Chemical Reviews, vol.116, issue.15, pp.8693-8749, 2016.

U. Apfel, D. Troegel, Y. Halpin, S. Tschierlei, U. Uhlemann et al., Models for the Active Site in [FeFe] Hydrogenase with Iron-Bound Ligands Derived from Bis-, Tris-, and Tetrakis(mercaptomethyl)silanes, Inorganic Chemistry, vol.49, issue.21, pp.10117-10132, 2010.

R. Zaffaroni, T. B. Rauchfuss, D. L. Gray, L. De-gioia, and G. Zampella, Terminal vs Bridging Hydrides of Diiron Dithiolates: Protonation of Fe2(dithiolate)(CO)2(PMe3)4, Journal of the American Chemical Society, vol.134, issue.46, pp.19260-19269, 2012.

K. Lubitz-;-weber, T. Krämer, H. S. Shafaat, T. Weyhermüller, E. Bill et al., J. Am. Chem. Soc, vol.134, issue.1, p.20745, 2012.

C. Kolomyjec, J. Whelan, and B. Bosnich, Biological analogs. Synthesis of vicinal trimercapto ligands, Inorganic Chemistry, vol.22, issue.16, pp.2343-2345, 1983.

M. Razavet, S. C. Davies, D. L. Hughes, and C. J. Pickett, {2Fe3S} clusters related to the di-iron sub-site of the H-centre of all-iron hydrogenases, Chemical Communications, issue.9, pp.847-848, 2001.

M. Razavet, S. C. Davies, D. L. Hughes, J. E. Barclay, D. J. Evans et al., All-iron hydrogenase: synthesis, structure and properties of {2Fe3S}-assemblies related to the di-iron sub-site of the H-clusterElectronic supplementary information (ESI) available: crystal and structure refinement data for complexes 4a, 4b and 5a. See http://www.rsc.org/suppdata/dt/b2/b209690k/, Dalton Transactions, issue.4, pp.586-595, 2003.

R. A. Valiulin and A. G. Kutateladze, 2,6,7-Trithiabicyclo[2.2.2]octanes as Promising Photolabile Tags for Combinatorial Encoding, The Journal of Organic Chemistry, vol.73, issue.1, pp.335-338, 2008.

K. Izutsu, Acid-Base Dissociation Constants in Dipolar Aprotic Solvents, 1990.

V. Fourmond, P. -. Jacques, M. Fontecave, and V. Artero, H2Evolution and Molecular Electrocatalysts: Determination of Overpotentials and Effect of Homoconjugation, Inorganic Chemistry, vol.49, issue.22, pp.10338-10347, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01069160

V. Artero and J. Saveant, Toward the rational benchmarking of homogeneous H2-evolving catalysts, Energy Environ. Sci., vol.7, issue.11, pp.3808-3814, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01069183

J. L. Dempsey, B. S. Brunschwig, J. R. Winkler, and H. B. Gray, Hydrogen Evolution Catalyzed by Cobaloximes, Accounts of Chemical Research, vol.42, issue.12, pp.1995-2004, 2009.

N. Kaeffer, M. Chavarot-kerlidou, and V. Artero, Hydrogen Evolution Catalyzed by Cobalt Diimine?Dioxime Complexes, Accounts of Chemical Research, vol.48, issue.5, pp.1286-1295, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01166229

N. Queyriaux, R. T. Jane, J. Massin, V. Artero, and M. Chavarot-kerlidou, Recent developments in hydrogen evolving molecular cobalt(II)?polypyridyl catalysts, Coordination Chemistry Reviews, vol.304-305, pp.3-19, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221080

P. E. Siegbahn, J. W. Tye, and M. B. Hall, Computational Studies of [NiFe] and [FeFe] Hydrogenases, Chemical Reviews, vol.107, issue.10, pp.4414-4435, 2007.

G. Dong and U. Ryde, Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods, JBIC Journal of Biological Inorganic Chemistry, vol.21, issue.3, pp.383-394, 2016.