P. H. Barry, Jpcalc, a software package for calculating liquid-junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements, J. Neurosci. Methods, vol.51, pp.107-116, 1994.

Y. Bernardinelli, I. Nikonenko, and D. Muller, Structural plasticity: mechanisms and contribution to developmental psychiatric disorders, Front. Neuroanat, vol.8, p.123, 2014.

P. Blaesse, M. S. Airaksinen, C. Rivera, K. , and K. , Cation-chloride cotransporters and neuronal function, Neuron, vol.61, pp.820-838, 2009.

J. Borovac, M. Bosch, and K. Okamoto, Regulation of actin dynamics during structural plasticity of dendritic spines: signaling messengers and actinbinding proteins, Mol. Cell. Neurosci, vol.91, pp.122-130, 2018.

B. Calabrese, J. Saffin, and S. Halpain, Activity-dependent dendritic spine shrinkage and growth involve downregulation of cofilin via distinct mechanisms, PLoS One, vol.9, p.94787, 2014.

Q. Chevy, M. Heubl, M. Goutierre, S. Backer, I. Moutkine et al., KCC2 gates activity-driven AMPA receptor traffic through cofilin phosphorylation, J. Neurosci, vol.35, pp.15772-15786, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01921302

A. Contractor, V. A. Klyachko, and C. Portera-cailliau, Altered neuronal and circuit excitability in fragile X syndrome, Neuron, vol.87, pp.699-715, 2015.

A. Contractor, C. Mulle, and G. T. Swanson, Kainate receptors coming of age: milestones of two decades of research, Trends Neurosci, vol.34, pp.154-163, 2011.

B. A. Copits and G. T. Swanson, Kainate receptor post-translational modifications differentially regulate association with 4.1N to control activity-dependent receptor endocytosis, J. Biol. Chem, vol.288, pp.8952-8965, 2013.

M. Córdoba, S. Rodriguez, D. González-morón, N. Medina, and M. A. Kauffman, Expanding the spectrum of Grik2 mutations: intellectual disability, behavioural disorder, epilepsy and dystonia, Clin. Genet, vol.87, pp.293-295, 2015.

S. Fièvre, M. Carta, I. Chamma, V. Labrousse, O. Thoumine et al., Molecular determinants for the strictly compartmentalized expression of kainate receptors in CA3 pyramidal cells, Nat. Commun, vol.7, p.12738, 2016.

H. Fiumelli, A. Briner, M. Puskarjov, P. Blaesse, B. J. Belem et al., An ion transport-independent role for the cation-chloride cotransporter KCC2 in dendritic spinogenesis in vivo, Cereb. Cortex, vol.23, pp.378-388, 2013.

D. Garand, V. Mahadevan, and M. A. Woodin, Ionotropic and metabotropic kainate receptor signalling regulates Cl-homeostasis and GABAergic inhibition, J. Physiol, vol.597, pp.1677-1690, 2019.

G. Gauvain, I. Chamma, Q. Chevy, C. Cabezas, T. Irinopoulou et al., The neuronal K-Cl cotransporter KCC2 influences postsynaptic AMPA receptor content and lateral diffusion in dendritic spines, Proc. Natl. Acad. Sci. U S A, vol.108, pp.15474-15479, 2011.

Y. F. Guzmán, K. Ramsey, J. R. Stolz, D. W. Craig, M. J. Huentelman et al., A gain-of-function mutation in the GRIK2 gene causes neurodevelopmental deficits, Neurol. Genet, vol.3, p.129, 2017.

L. Hinz, . Torrella, J. Barrufet, and V. M. Heine, KCC2 expression levels are reduced in post mortem brain tissue of Rett syndrome patients, Acta Neuropathol. Commun, vol.7, pp.196-206, 2019.

P. Hotulainen and C. C. Hoogenraad, Actin in dendritic spines: connecting dynamics to function, J. Cell Biol, vol.189, pp.619-629, 2010.

P. Hotulainen, O. Llano, S. Smirnov, K. Tanhuanpaa, J. Faix et al., Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis, J. Cell Biol, vol.185, pp.323-339, 2009.

A. Jack, M. I. Hamad, S. Gonda, S. Gralla, S. Pahl et al., Development of cortical pyramidal cell and interneuronal dendrites: a role for kainate receptor subunits and NETO1, Mol. Neurobiol, vol.56, pp.4960-4979, 2019.

S. Jamain, C. Betancur, H. Quach, A. Philippe, M. Fellous et al., Linkage and association of the glutamate receptor 6 gene with autism, Mol. Psychiatry, vol.7, pp.302-310, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00125097

K. Kaila, T. J. Price, J. A. Payne, M. Puskarjov, and J. Voipio, Cationchloride cotransporters in neuronal development, plasticity and disease, Nat. Rev. Neurosci, vol.15, pp.637-654, 2014.

S. Khirug, K. Huttu, A. Ludwig, S. Smirnov, J. Voipio et al., Distinct properties of functional KCC2 expression in immature mouse hippocampal neurons in culture and in acute slices, Eur. J. Neurosci, vol.21, pp.899-904, 2005.

M. Koskinen, E. Bertling, and P. Hotulainen, Methods to measure actin treadmilling rate in dendritic spines, Meth. Enzymol, vol.505, pp.47-58, 2012.

F. Lanore, V. F. Labrousse, Z. Szabo, E. Normand, C. Blanchet et al., Deficits in morphofunctional maturation of hippocampal mossy fiber synapses in a mouse model of intellectual disability, J. Neurosci, vol.32, pp.17882-17893, 2012.

J. Lerma and J. M. Marques, Kainate receptors in health and disease, Neuron, vol.80, pp.292-311, 2013.

H. Li, S. Fertuzinhos, E. Mohns, T. S. Hnasko, M. Verhage et al., Laminar and columnar development of barrel cortex relies on thalamocortical neurotransmission, Neuron, vol.79, pp.970-986, 2013.

H. Li, S. Khirug, C. Cai, A. Ludwig, P. Blaesse et al., KCC2 interacts with the dendritic cytoskeleton to promote spine development, Neuron, vol.56, pp.1019-1033, 2007.

O. Llano, S. Smirnov, S. Soni, A. Golubtsov, I. Guillemin et al., KCC2 regulates actin dynamics in dendritic spines via interaction with ?-PIX, J. Cell Biol, vol.209, pp.671-686, 2015.

A. Ludwig, H. Li, M. Saarma, K. Kaila, and C. Rivera, Developmental up-regulation of KCC2 in the absence of GABAergic and glutamatergic transmission, Eur. J. Neurosci, vol.18, pp.3199-3206, 2003.

V. Mahadevan, J. C. Pressey, B. A. Acton, P. Uvarov, M. Y. Huang et al., Kainate receptors coexist in a functional complex with KCC2 and regulate chloride homeostasis in hippocampal neurons, Cell Rep, vol.7, pp.1762-1770, 2014.

C. Marchal and C. Mulle, Postnatal maturation of mossy fibre excitatory transmission in mouse CA3 pyramidal cells: a potential role for kainate receptors, J. Physiol, vol.561, pp.27-37, 2004.

M. Markkanen, T. Karhunen, O. Llano, A. Ludwig, C. Rivera et al., Distribution of neuronal KCC2a and KCC2b isoforms in mouse CNS, J. Comp. Neurol, vol.522, pp.1897-1914, 2014.

J. M. Marques, R. J. Rodrigues, S. Valbuena, J. L. Rozas, S. Selak et al., CRMP2 tethers kainate receptor activity to cytoskeleton dynamics during neuronal maturation, J. Neurosci, vol.33, pp.18298-18310, 2013.

M. Mavrovic, P. Uvarov, E. Delpire, L. Vutskits, K. Kaila et al., Loss of non-canonical KCC2 functions promotes developmental apoptosis of cortical projection neurons, EMBO Rep, vol.21, p.48880, 2020.

M. Mondin, M. Carta, E. Normand, C. Mulle, and F. Coussen, Profilin II regulates the exocytosis of kainate glutamate receptors, J. Biol. Chem, vol.285, pp.40060-40071, 2010.

M. M. Petrovic, S. Viana-da-silva, J. P. Clement, L. Vyklicky, C. Mulle et al., Metabotropic action of postsynaptic kainate receptors triggers hippocampal long-term potentiation, Nat. Neurosci, vol.20, pp.529-539, 2017.

D. L. Pettit, A. , and G. J. , Distribution of functional glutamate and GABA receptors on hippocampal pyramidal cells and interneurons, J. Neurophysiol, vol.84, pp.28-38, 2000.

P. S. Pinheiro and C. Mulle, Presynaptic glutamate receptors: physiological functions and mechanisms of action, Nat. Rev. Neurosci, vol.9, pp.423-436, 2008.

J. C. Pressey, V. Mahadevan, C. S. Khademullah, Z. Dargaei, J. Chevrier et al., A kainate receptor subunit promotes the recycling of the neuronspecific K + -Cl ? co-transporter KCC2 in hippocampal neurons, J. Biol. Chem, vol.292, pp.6190-6201, 2017.

C. Rivera, J. Voipio, J. A. Payne, E. Ruusuvuori, H. Lahtinen et al., The K + /Cl ? co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation, Nature, vol.397, pp.251-255, 1999.

A. Rodriguez, D. B. Ehlenberger, D. L. Dickstein, P. R. Hof, and S. L. Wearne, Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images, PLoS One, vol.3, p.1997, 2008.

P. Sakha, A. Vesikansa, E. Orav, J. Heikkinen, T. Kukko-lukjanov et al., Axonal kainate receptors modulate the strength of efferent connectivity by regulating presynaptic differentiation, Front. Cell. Neurosci, vol.10, p.3, 2016.

E. N. Star, D. J. Kwiatkowski, and V. N. Murthy, Rapid turnover of actin in dendritic spines and its regulation by activity, Nat. Neurosci, vol.5, pp.239-246, 2002.

X. Tang, J. Drotar, K. Li, C. D. Clairmont, A. S. Brumm et al., Pharmacological enhancement of KCC2 gene expression exerts therapeutic effects on human Rett syndrome neurons and Mecp2 mutant mice, Sci. Transl. Med, vol.11, p.164, 2019.

X. Tang, J. Kim, L. Zhou, E. Wengert, L. Zhang et al., KCC2 rescues functional deficits in human neurons derived from patients with Rett syndrome, Proc. Natl. Acad. Sci. U S A, vol.113, pp.751-756, 2016.

J. Tornberg, V. Voikar, H. Savilahti, H. Rauvala, and M. S. Airaksinen, Behavioural phenotypes of hypomorphic KCC2-deficient mice, Eur. J. Neurosci, vol.21, pp.1327-1337, 2005.

A. Tashiro, A. Dunaevsky, R. Blazeski, C. A. Mason, and R. Yuste, Bidirectional regulation of hippocampal mossy fiber filopodial motility by kainate receptors: a two-step model of synaptogenesis, Neuron, vol.38, pp.773-784, 2003.

A. Vesikansa, P. Sakha, J. Kuja-panula, S. Molchanova, C. Rivera et al., Expression of GluK1c underlies the developmental switch in presynaptic kainate receptor function, Sci. Rep, vol.2, pp.310-312, 2012.

J. Xu, J. J. Marshall, H. B. Fernandes, T. Nomura, B. A. Copits et al., Complete disruption of the kainate receptor gene family results in corticostriatal dysfunction in mice, Cell Rep, vol.18, pp.1848-1857, 2017.

Y. Yoshihara, M. De-roo, and D. Muller, Dendritic spine formation and stabilization, Curr. Opin. Neurobiol, vol.19, pp.146-153, 2009.