Skip to Main content Skip to Navigation
Journal articles

Convergence in games with continua of equilibria

Abstract : In game theory, the question of convergence of dynamical systems to the set of Nash equilibria has often been tackled. When the game admits a continuum of Nash equilibria, however, a natural and challenging question is whether convergence to the set of Nash equilibria implies convergence to a Nash equilibrium. In this paper we introduce a technique developed in Bhat and Bernstein (2003) as a useful way to answer this question. We illustrate it with the best-response dynamics in the local public good game played on a network, where continua of Nash equilibria often appear.
Document type :
Journal articles
Complete list of metadatas

https://hal-amu.archives-ouvertes.fr/hal-02964989
Contributor : Elisabeth Lhuillier <>
Submitted on : Monday, October 12, 2020 - 7:15:35 PM
Last modification on : Tuesday, October 13, 2020 - 3:36:25 AM

Identifiers

Collections

Citation

Sebastian Bervoets, Mathieu Faure. Convergence in games with continua of equilibria. Journal of Mathematical Economics, Elsevier, 2020, 90, pp.25-30. ⟨10.1016/j.jmateco.2020.05.006⟩. ⟨hal-02964989⟩

Share

Metrics

Record views

16