A. Von-diezmann, Y. Shechtman, and W. E. Moerner, Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking, Chem. Rev, vol.117, pp.7244-7275, 2017.

M. K. Lee, P. Rai, J. Williams, R. J. Twieg, and W. E. Moerner, Small-molecule labeling of live cell surfaces for three-dimensional super-resolution microscopy, J. Am. Chem. Soc, vol.136, pp.14003-14006, 2014.

D. Sage, Super-resolution Fight Club: assessment of 2D and 3D single-molecule localization microscopy software, Nat. Methods, vol.16, pp.387-395, 2019.

R. P. Theart, B. Loos, and T. R. Niesler, Virtual reality assisted microscopy data visualization and colocalization analysis, BMC Bioinf, vol.18, p.64, 2017.

S. Caroline and L. H. Adam, ConfocalVR: immersive visualization for confocal microscopy, J. Mol. Biol, vol.430, pp.4028-4035, 2018.

M. El-beheiry and M. Dahan, ViSP: representing single-particle localizations in three dimensions, Nat. Methods, vol.10, pp.689-690, 2013.

R. Henriques, QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ, Nat. Methods, vol.7, pp.339-340, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-02081312

M. Ovesný, P. K?í?ek, J. Borkovec, Z. ?vindrych, and G. M. Hagen, ThunderSTORM: a comprehensive imageJ Plug-In for PALM and STORM data analysis and super-resolution imaging, Bioinformatics, vol.30, pp.2389-2390, 2014.

T. Takashina, M. Ito, and Y. Kokumai, Evaluation of navigation operations in immersive microscopic visualization. VRST '19 Proc, vol.68, p.68, 2019.

S. Culley, Quantitative mapping and minimization of super-resolution optical imaging artifacts, Nat. Methods, vol.15, pp.263-266, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01736919

S. F. Lee, M. A. Thompson, M. A. Schwartz, L. Shapiro, and W. E. Moerner, Super-resolution Imaging of the nucleoid-associated protein HU in Caulobacter crescentus, Biophys. J, vol.100, pp.31-33, 2011.

J. Griffié, 3D Bayesian cluster analysis of super-resolution data reveals LAT recruitment to the T cell synapse, Sci. Rep, vol.7, p.4077, 2017.

B. F. Lillemeier, TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation, Nat. Immunol, vol.11, pp.90-96, 2010.

M. J. Broadhead, PSD95 nanoclusters are postsynaptic building blocks in hippocampus circuits, Sci. Rep, vol.6, p.24626, 2016.

C. Leterrier, P. Dubey, and S. Roy, The nano-architecture of the axonal cytoskeleton, Nat. Rev. Neurosci, vol.18, pp.713-726, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01701366

W. R. Legant, High-density three-dimensional localization microscopy across large volumes, Nat. Methods, vol.13, pp.359-365, 2016.

A. R. Carr, Development of Three-Dimensional Super-Resolution Imaging Using a Double-Helix Point Spread Function, 2019.

,

Y. Li, Real-time 3D single-molecule localization using experimental point spread functions, Nat. Methods, vol.15, pp.367-369, 2018.

A. Jimenez, K. Friedl, and C. Leterrier, About samples, giving examples: optimized procedures for single molecule localization microscopy, Methods, vol.174, pp.100-114, 2020.

S. Vassilopoulos, Ultrastructure of the axonal periodic scaffold reveals a braid-like organization of actin rings, Nat. Commun, vol.10, p.5803, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02423801

, Scale bar is approximately 1 um. a, A 'birds-eye' projection of the two channels in vLUME. b, The same data set from a different point of view closer to the ground to show the 3D nature of the data. To achieve this superposition the first channel has to be opened in vLUME and the color changed. Then the second channel also needs to be opened and changed in color, Extended Data Fig. 1 | Microtubules and Clatherin in CoS cells. Two-channel data of Microtubules (purple) and Clathrin (green) in COS cells from dataset 5

, The red to blue gradient of the image shows an increasing density of nearest neighbors within a radius of 50 nm (user defined). The color-gradient scale bar goes from 0 to 34 neighbors