T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson, and S. W. Wilkins, Phase-contrast imaging of weakly absorbing materials using hard X-rays, Nature, vol.373, p.595, 1995.

A. J. Shahani, X. Xiao, and P. W. Voorhees, The mechanism of eutectic growth in highly anisotropic materials, Nat. Commun, vol.7, p.12953, 2016.

S. C. Garcea, Y. Wang, and P. J. Withers, X-ray computed tomography of polymer composites, Compos. Sci. Technol, vol.156, pp.305-319, 2018.

S. C. Mayo, A. W. Stevenson, and S. W. Wilkins, Line Phase-Contrast X-ray Imaging and Tomography for Materials Science, vol.5, pp.937-965, 2012.

F. Arfelli, Low-dose phase contrast x-ray medical imaging, Phys. Med. Biol, vol.43, pp.2845-2852, 1998.

F. Arfelli, Mammography with synchrotron radiation: phase-detection techniques, Radiology, vol.215, pp.286-293, 2000.

A. Olivo, Phase contrast imaging of breast tumours with synchrotron radiation, Appl. Radiat. Isot, vol.67, pp.1033-1041, 2009.

S. W. Wilkins, T. E. Gureyev, D. Gao, A. Pogany, and A. W. Stevenson, Phase-contrast imaging using polychromatic hard X-rays, Nature, vol.384, p.335, 1996.

V. Y. Shovkun and M. A. Kumakhov, Phase contrast imaging with micro focus X-ray tube, Proc. SPIE, vol.5943, p.594315, 2006.

L. Chen, L. Zheng, Y. Ai-min, and L. Cheng-quan, Influence of tube voltage and current on in-line phase contrast imaging using a microfocus x-ray source, Chinese Phys, vol.16, pp.2319-2324, 2007.

C. J. Kotre and K. J. Robson, Phase-contrast and magnification radiography at diagnostic X-ray energies using a pseudo-microfocus X-ray source, Br. J. Radiol, vol.87, p.20130734, 2014.

E. Espes, Liquid-metal-jet x-ray tube technology and tomography applications, Proc. SPIE, vol.9212, p.92120, 2014.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation, Rev. Sci. Instrum, vol.66, pp.5486-5492, 1995.

P. Cloetens, R. Barrett, J. Baruchel, J. Guigay, and M. Schlenker, Phase objects in synchrotron radiation hard x-ray imaging, J. Phys. D: Appl. Phys, vol.29, pp.133-146, 1996.

P. Cloetens, Hard x-ray phase imaging using simple propagation of a coherent synchrotron radiation beam, J. Phys. D: Appl. Phys, vol.32, pp.145-151, 1999.
URL : https://hal.archives-ouvertes.fr/hal-01538083

P. Spanne, C. Raven, I. Snigireva, and A. Snigirev, In-line holography and phase-contrast microtomography with high energy x-rays, Phys. Med. Biol, vol.44, pp.741-749, 1999.

S. Kneip, X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator, Appl. Phys. Lett, vol.99, p.93701, 2011.

S. Fourmaux, Laser wakefield acceleration: application to Betatron x-ray radiation production and x-ray imaging, Proc. SPIE, vol.8412, p.841211, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01401690

Z. Najmudin, Compact laser accelerators for X-ray phase-contrast imaging, Phil. Trans. R. Soc. A, vol.372, p.20130032, 2014.

J. Wenz, Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source, Nat. Commun, vol.6, pp.1-6, 2015.

U. Chaulagain, X-ray phase contrast imaging of biological samples using a betatron x-ray source generated in a laser wakefield accelerator, Proc. SPIE, vol.10240, p.1024014, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01599354

A. E. Hussein, Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures, Sci. Rep, vol.9, pp.1-13, 2019.

B. Guo, High-resolution phase-contrast imaging of biological specimens using a stable betatron X-ray source in the multipleexposure mode, Sci. Rep, vol.9, pp.1-10, 2019.

H. Ikeura-sekiguchi, In-line phase-contrast imaging of a biological specimen using a compact laser-Compton scattering-based x-ray source, Appl. Phys. Lett, vol.92, p.131107, 2008.

P. Oliva, Quantitative evaluation of single-shot inline phase contrast imaging using an inverse compton x-ray source, Appl. Phys. Lett, vol.97, p.134104, 2010.

R. Gradl, Propagation-based Phase-Contrast X-ray Imaging at a, Compact Light Source. Sci. Rep, vol.7, pp.1-9, 2017.

R. Gradl, In vivo Dynamic Phase-Contrast X-ray Imaging using a Compact Light Source. Sci. Rep, vol.8, pp.1-8, 2018.

S. Fourmaux and J. C. Kieffer, Laser-based K? X-ray emission characterization using a high contrast ratio and high-power laser system, Appl. Phys. B, vol.122, p.162, 2016.

Y. Azamoum, High photon flux K? Mo x-ray source driven by a multi-terawatt femtosecond laser at 100 Hz, Opt. Lett, vol.43, pp.3574-3577, 2018.

K. Huang, Intense high repetition rate Mo K? x-ray source generated from laser solid interaction for imaging application, Rev. Sci. Instrum, vol.85, p.113304, 2014.

R. Toth, Evaluation of ultrafast laser-based hard x-ray sources for phase-contrast imaging, Phys. Plasmas, vol.14, p.53506, 2007.

A. Rousse, Non-thermal melting in semiconductors measured at femtosecond resolution, Nature, vol.410, pp.65-68, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00523521

A. Krol, Initial experimentation with in-line holography x-ray phase-contrast imaging with an ultrafast laser-based x-ray source, Proc. SPIE, vol.6510, 2007.

L. Martín, Commissioning of a laser-plasma x-ray micro-focus source for phase contrast imaging, Proc. oSPIE 11036, p.110360, 2019.

R. Toth, J. C. Kieffer, S. Fourmaux, T. Ozaki, and A. Krol, In-line phase-contrast imaging with a laser-based hard x-ray source, Rev. Sci. Instrum, vol.76, p.83701, 2005.

J. A. Chakera, A. Ali, Y. Y. Tsui, and R. Fedosejevs, A continuous kilohertz Cu K? source produced by submillijoule femtosecond laser pulses for phase contrast imaging, Appl. Phys. Lett, vol.93, p.261501, 2008.

C. M. Laperle, Low density contrast agents for x-ray phase contrast imaging: the use of ambient air for x-ray angiography of excised murine liver tissue, Phys. Med. Biol, vol.53, pp.6911-6923, 2008.

L. M. Chen, Phase-contrast x-ray imaging with intense ArK? radiation from femtosecond-laser-driven gas target, Appl. Phys. Lett, vol.90, p.211501, 2007.

M. Li, Laser-driven powerful kHz hard x-ray source, Radiat. Phys. Chem, vol.137, pp.78-82, 2017.

F. Barbato, Quantitative phase contrast imaging of a shock-wave with a laser-plasma based X-ray source, Sci Rep, vol.9, p.18805, 2019.

T. A. Pikuz, Propagation-based phase-contrast enhancement of nanostructure images using a debris-free femtosecond-laserdriven cluster-based plasma soft x-ray source and an LiF crystal detector, Appl. Opt, vol.48, pp.6271-6276, 2009.

R. Clady, 22 W average power multiterawatt femtosecond laser chain enabling 10 19 W/cm 2 at 100 Hz, Appl. Phys. B, vol.124, p.89, 2018.

Y. Azamoum, Impact of the pulse contrast ratio on molybdenum K? generation by ultrahigh intensity femtosecond laser solid interaction, Sci. Rep, vol.8, pp.1-11, 2018.

S. Fourmaux, Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system, Opt. Express, vol.19, pp.8486-8497, 2011.

A. Bravin, P. Coan, and P. Suortti, X-ray phase-contrast imaging: from pre-clinical applications towards clinics, Phys. Med. Biol, vol.58, pp.1-35, 2013.

A. Momose, Recent Advances in X-ray Phase Imaging, Jpn. J. Appl. Phys, vol.44, p.6355, 2005.

X. Wu and H. Liu, Clarification of aspects in in-line phase-sensitive x-ray imaging, Med. Phys, vol.34, pp.737-743, 2007.

B. L. Henke, E. M. Gullikson, and J. C. Davis, X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables, vol.54, pp.181-342, 1993.

D. C. Eder, G. Pretzler, E. Fill, K. Eidmann, and A. Saemann, Spatial characteristics of K? radiation from weakly relativistic laser plasmas, Appl. Phys. B, vol.70, pp.211-217, 2000.

D. Paganin, S. C. Mayo, T. E. Gureyev, P. R. Miller, and S. W. Wilkins, Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object, J. Microsc, vol.206, pp.33-40, 2002.

M. A. Beltran, D. M. Paganin, and D. Pelliccia, Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation, J. Opt, vol.20, p.55605, 2018.

S. Vedantham and A. Karellas, X-ray phase contrast imaging of the breast: Analysis of tissue simulating materials, Med. Phys, vol.40, p.41906, 2013.