J. L. Berry and V. Pelicic, Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives, FEMS Microbiology Reviews, vol.39, issue.1, pp.134-154, 2014.

C. L. Giltner, Y. Nguyen, and L. L. Burrows, Type IV Pilin Proteins: Versatile Molecular Modules, Microbiology and Molecular Biology Reviews, vol.76, issue.4, pp.740-772, 2012.

D. W. Adams, S. Stutzmann, C. Stoudmann, and M. Blokesch, DNA-uptake pili of Vibrio cholerae are required for chitin colonization and capable of kin recognition via sequence-specific self-interaction, Nature Microbiology, vol.4, issue.9, pp.1545-1557, 2019.

E. S. Gloag, L. Turnbull, A. Huang, P. Vallotton, H. Wang et al., Self-organization of bacterial biofilms is facilitated by extracellular DNA, Proceedings of the National Academy of Sciences, vol.110, issue.28, pp.11541-11546, 2013.

E. S. Gloag, L. Turnbull, M. A. Javed, H. Wang, M. L. Gee et al., Stigmergy co-ordinates multicellular collective behaviours during Myxococcus xanthus surface migration, Scientific Reports, vol.6, issue.1, p.26005, 2016.

Y. W. Chang, L. A. Rettberg, A. Treuner-lange, J. Iwasa, L. Søgaard-andersen et al., Architecture of the type IVa pilus machine, Science, vol.351, issue.6278, p.aad2001, 2016.

Y. W. Chang, A. Kjær, D. R. Ortega, G. Kovacikova, J. A. Sutherland et al., Architecture of the Vibrio cholerae toxin-coregulated pilus machine revealed by electron cryotomography, Nature Microbiology, vol.2, issue.4, p.16269, 2017.

V. A. Gold, R. Salzer, B. Averhoff, and W. Kühlbrandt, Structure of a type IV pilus machinery in the open and closed state, eLife, vol.4, p.7380, 2015.

R. F. Souza, V. Anantharaman, S. J. Souza, L. Aravind, and F. J. Gueiros-filho, AMIN domains have a predicted role in localization of diverse periplasmic protein complexes, Bioinformatics, vol.24, pp.2423-2426, 2008.

K. Siewering, S. Jain, C. Friedrich, M. T. Webber-birungi, D. A. Semchonok et al., Peptidoglycan-binding protein TsaP functions in surface assembly of type IV pili, Proceedings of the National Academy of Sciences, vol.111, issue.10, pp.E953-E961, 2014.

T. Carter, R. N. Buensuceso, S. Tammam, R. P. Lamers, H. Harvey et al., The Type IVa Pilus Machinery Is Recruited to Sites of Future Cell Division, mBio, vol.8, issue.1, pp.2103-2119, 2017.

J. M. Skerker and H. C. Berg, Direct observation of extension and retraction of type IV pili, Proceedings of the National Academy of Sciences, vol.98, issue.12, pp.6901-6904, 2001.

L. Talà, A. Fineberg, P. Kukura, and A. Persat, Pseudomonas aeruginosa orchestrates twitching motility by sequential control of type IV pili movements, Nature Microbiology, vol.4, issue.5, pp.774-780, 2019.

D. Bhaya, N. R. Bianco, D. Bryant, and A. Grossman, Type IV pilus biogenesis and motility in the cyanobacteriumSynechocystissp. PCC6803, Molecular Microbiology, vol.37, issue.4, pp.941-951, 2000.

I. Bulyha, C. Schmidt, P. Lenz, V. Jakovljevic, A. Höne et al., Regulation of the type IV pili molecular machine by dynamic localization of two motor proteins, Molecular Microbiology, vol.74, issue.3, pp.691-706, 2009.

D. Nakane and T. Nishizaka, Asymmetric distribution of type IV pili triggered by directional light in unicellular cyanobacteria, Proceedings of the National Academy of Sciences, vol.114, issue.25, pp.6593-6598, 2017.

B. D. Blackhart and D. R. Zusman, "Frizzy" genes of Myxococcus xanthus are involved in control of frequency of reversal of gliding motility., Proceedings of the National Academy of Sciences, vol.82, issue.24, pp.8767-8770, 1985.

N. M. Oliveira, K. R. Foster, and W. M. Durham, Single-cell twitching chemotaxis in developing biofilms, Proceedings of the National Academy of Sciences, vol.113, issue.23, pp.6532-6537, 2016.

Y. Zhang, M. Guzzo, A. Ducret, Y. Z. Li, and T. Mignot, A Dynamic Response Regulator Protein Modulates G-Protein?Dependent Polarity in the Bacterium Myxococcus xanthus, PLoS Genetics, vol.8, issue.8, p.e1002872, 2012.

L. M. Faure, J. Fiche, L. Espinosa, A. Ducret, V. Anantharaman et al., The mechanism of force transmission at bacterial focal adhesion complexes, Nature, vol.539, issue.7630, pp.530-535, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01440771

H. Sun, D. R. Zusman, and W. Shi, Type IV pilus of Myxococcus xanthus is a motility apparatus controlled by the frz chemosensory system, Current Biology, vol.10, issue.18, pp.1143-1146, 2000.

A. Lu, K. Cho, W. P. Black, X. Duan, R. Lux et al., Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus, Molecular Microbiology, vol.55, issue.1, pp.206-220, 2004.

W. Hu, M. Hossain, R. Lux, J. Wang, Z. Yang et al., Exopolysaccharide-Independent Social Motility of Myxococcus xanthus, PLoS ONE, vol.6, issue.1, p.e16102, 2011.

D. Szadkowski, Spatial control of the GTPase MglA by localized RomR-RomX GEF and MglB GAP activities enables Myxococcus xanthus motility, Nat. Microbiol, vol.4, pp.1344-1355, 2019.

S. Leonardy, M. Miertzschke, I. Bulyha, E. Sperling, A. Wittinghofer et al., Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP, The EMBO Journal, vol.29, issue.14, pp.2276-2289, 2010.

Y. Zhang, M. Franco, A. Ducret, and T. Mignot, A Bacterial Ras-Like Small GTP-Binding Protein and Its Cognate GAP Establish a Dynamic Spatial Polarity Axis to Control Directed Motility, PLoS Biology, vol.8, issue.7, p.e1000430, 2010.

R. Mercier and T. Mignot, Regulations governing the multicellular lifestyle of Myxococcus xanthus, Current Opinion in Microbiology, vol.34, pp.104-110, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01452078

J. Herrou and T. Mignot, Dynamic polarity control by a tunable protein oscillator in bacteria, Current Opinion in Cell Biology, vol.62, pp.54-60, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02459706

A. Treuner-lange, E. Macia, M. Guzzo, E. Hot, L. M. Faure et al., The small G-protein MglA connects to the MreB actin cytoskeleton at bacterial focal adhesions, Journal of Cell Biology, vol.210, issue.2, pp.243-256, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452062

G. Fu, J. N. Bandaria, A. V. Le-gall, X. Fan, A. Yildiz et al., MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility, Proceedings of the National Academy of Sciences, vol.115, issue.10, pp.2484-2489, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02092832

C. K. Ellison, J. Kan, R. S. Dillard, D. T. Kysela, A. Ducret et al., Obstruction of pilus retraction stimulates bacterial surface sensing, Science, vol.358, issue.6362, pp.535-538, 2017.

C. K. Ellison, T. N. Dalia, A. Vidal-ceballos, J. Wang, N. Biais et al., Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae, Nature Microbiology, vol.3, issue.7, pp.773-780, 2018.

M. Guzzo, R. Agrebi, L. Espinosa, G. Baronian, V. Molle et al., Evolution and Design Governing Signal Precision and Amplification in a Bacterial Chemosensory Pathway, PLOS Genetics, vol.11, issue.8, p.e1005460, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01452074

P. Youderian and P. L. Hartzell, Transposon Insertions ofmagellan-4That Impair Social Gliding Motility inMyxococcus xanthus, Genetics, vol.172, issue.3, pp.1397-1410, 2005.

W. P. Black, Q. Xu, and Z. Yang, Type IV pili function upstream of the Dif chemotaxis pathway in Myxococcus xanthus EPS regulation, Molecular Microbiology, vol.61, issue.2, pp.447-456, 2006.

L. Cerveny, A. Straskova, V. Dankova, A. Hartlova, M. Ceckova et al., Tetratricopeptide Repeat Motifs in the World of Bacterial Pathogens: Role in Virulence Mechanisms, Infection and Immunity, vol.81, issue.3, pp.629-635, 2012.

A. Perez-riba and L. S. Itzhaki, The tetratricopeptide-repeat motif is a versatile platform that enables diverse modes of molecular recognition, Current Opinion in Structural Biology, vol.54, pp.43-49, 2019.

H. B. Thomaides, M. Freeman, M. E. Karoui, and J. Errington, Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation, Genes & Development, vol.15, issue.13, pp.1662-1673, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02669425

P. H. Viollier, N. Sternheim, and L. Shapiro, A dynamically localized histidine kinase controls the asymmetric distribution of polar pili proteins, The EMBO Journal, vol.21, issue.17, pp.4420-4428, 2002.

P. H. Viollier, N. Sternheim, and L. Shapiro, Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins, Proceedings of the National Academy of Sciences, vol.99, issue.21, pp.13831-13836, 2002.

Y. Yamaichi, R. Bruckner, S. Ringgaard, A. Moll, D. E. Cameron et al., A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole, Genes & Development, vol.26, issue.20, pp.2348-2360, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02929596

D. S. Milner, R. Till, I. Cadby, A. L. Lovering, S. M. Basford et al., Ras GTPase-Like Protein MglA, a Controller of Bacterial Social-Motility in Myxobacteria, Has Evolved to Control Bacterial Predation by Bdellovibrio, PLoS Genetics, vol.10, issue.4, p.e1004253, 2014.

K. J. Evans, C. Lambert, and R. E. Sockett, Predation by Bdellovibrio bacteriovorus HD100 Requires Type IV Pili, Journal of Bacteriology, vol.189, issue.13, pp.4850-4859, 2007.

A. A. Medina, R. M. Shanks, and D. E. Kadouri, Development of a novel system for isolating genes involved in predator-prey interactions using host independent derivatives of Bdellovibrio bacteriovorus 109J, BMC Microbiology, vol.8, issue.1, p.33, 2008.

M. C. Duncan, R. K. Gillette, M. A. Maglasang, E. A. Corn, A. K. Tai et al., High-Throughput Analysis of Gene Function in the Bacterial Predator Bdellovibrio bacteriovorus, mBio, vol.10, issue.3, pp.1040-1059, 2019.

K. Okonechnikov, O. Golosova, and M. Fursov, Unipro UGENE: a unified bioinformatics toolkit, Bioinformatics, vol.28, issue.8, pp.1166-1167, 2012.