J. A. Imlay, R. Sethu, and S. K. Rohaun, Evolutionary adaptations that enable enzymes to tolerate oxidative stress, Free Radical Biology and Medicine, vol.140, pp.4-13, 2019.

C. Landeta, D. Boyd, and J. Beckwith, Disulfide bond formation in prokaryotes, Nature Microbiology, vol.3, issue.3, pp.270-280, 2018.

B. Ezraty, L. Aussel, and F. Barras, Methionine sulfoxide reductases in prokaryotes, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1703, issue.2, pp.221-229, 2005.

S. Santos, I. Petropoulos, and B. Friguet, The oxidized protein repair enzymes methionine sulfoxide reductases and their roles in protecting against oxidative stress, in ageing and in regulating protein function, Antioxidants, vol.7, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01982249

N. Brot, L. Weissbach, J. Werth, and H. Weissbach, Enzymatic reduction of protein-bound methionine sulfoxide., Proceedings of the National Academy of Sciences, vol.78, issue.4, pp.2155-2158, 1981.

R. Grimaud, B. Ezraty, J. K. Mitchell, D. Lafitte, C. Briand et al., Repair of Oxidized Proteins, Journal of Biological Chemistry, vol.276, issue.52, pp.48915-48920, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01614791

D. Spector, F. Etienne, N. Brot, and H. Weissbach, New membrane-associated and soluble peptide methionine sulfoxide reductases in Escherichia coli, Biochemical and Biophysical Research Communications, vol.302, issue.2, pp.284-289, 2003.

B. Ezraty, J. Bos, F. Barras, and L. Aussel, Methionine Sulfoxide Reduction and Assimilation in Escherichia coli: New Role for the Biotin Sulfoxide Reductase BisC, Journal of Bacteriology, vol.187, issue.1, pp.231-237, 2005.

A. Gennaris, B. Ezraty, C. Henry, R. Agrebi, A. Vergnes et al., Repairing oxidized proteins in the bacterial envelope using respiratory chain electrons, Nature, vol.528, issue.7582, pp.409-412, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01477089

L. Tarrago, S. Grosse, M. I. Siponen, D. Lemaire, B. Alonso et al., Rhodobacter sphaeroides methionine sulfoxide reductase P reduces R- and S-diastereomers of methionine sulfoxide from a broad-spectrum of protein substrates, Biochemical Journal, vol.475, issue.23, pp.3779-3795, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01936753

L. Loschi, S. J. Brokx, T. L. Hills, G. Zhang, M. G. Bertero et al., Structural and Biochemical Identification of a Novel Bacterial Oxidoreductase, J. Biol. Chem, vol.279, pp.50391-50400, 2004.

L. J. Ingersol, J. Yang, K. Kc, A. Pokhrel, A. V. Astashkin et al., Addressing Ligand-Based Redox in Molybdenum-Dependent Methionine Sulfoxide Reductase, Journal of the American Chemical Society, vol.142, issue.6, pp.2721-2725, 2020.

C. Juillan-binard, A. Picciocchi, J. Andrieu, J. J. Dupuy, I. Petit-hartlein et al., A Two-component NADPH Oxidase (NOX)-like System in Bacteria Is Involved in the Electron Transfer Chain to the Methionine Sulfoxide Reductase MsrP, Journal of Biological Chemistry, vol.292, issue.6, pp.2485-2494, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01477384

L. A. Denkel, S. A. Horst, S. F. Rouf, V. Kitowski, O. M. Böhm et al., Methionine Sulfoxide Reductases Are Essential for Virulence of Salmonella Typhimurium, PLoS ONE, vol.6, issue.11, p.e26974, 2011.

L. A. Denkel, M. Rhen, and F. Bange, Biotin sulfoxide reductase contributes to oxidative stress tolerance and virulence in Salmonella enterica serovar Typhimurium, Microbiology, vol.159, issue.Pt_7, pp.1447-1458, 2013.

R. Sarkhel, P. Rajan, A. K. Gupta, M. Kumawat, P. Agarwal et al., Methionine sulfoxide reductase A of Salmonella Typhimurium interacts with several proteins and abets in its colonization in the chicken, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1861, issue.12, pp.3238-3245, 2017.

U. Kappler, P. V. Bernhardt, J. Kilmartin, M. J. Riley, J. Teschner et al., SoxAX Cytochromes, a New Type of Heme Copper Protein Involved in Bacterial Energy Generation from Sulfur Compounds, Journal of Biological Chemistry, vol.283, issue.32, pp.22206-22214, 2008.

K. G. Havelius, S. Reschke, S. Horn, A. Do?ring, D. Niks et al., Structure of the Molybdenum Site in YedY, a Sulfite Oxidase Homologue fromEscherichia coli, Inorganic Chemistry, vol.50, issue.3, pp.741-748, 2011.

C. Pinske, M. Bönn, S. Krüger, U. Lindenstrauß, and R. G. Sawers, Metabolic Deficiences Revealed in the Biotechnologically Important Model Bacterium Escherichia coli BL21(DE3), PLoS ONE, vol.6, issue.8, p.e22830, 2011.

M. A. Bennett, Metabolism of sulphur, Biochemical Journal, vol.33, issue.11, pp.1794-1797, 1939.

S. I. Ejiri, H. Weissbach, and N. Brot, Reduction of methionine sulfoxide to methionine by Escherichia coli., Journal of Bacteriology, vol.139, issue.1, pp.161-164, 1979.

A. Sekowska, S. Robin, J. J. Daudin, A. Henaut, and A. Danchin, Extracting biological information from DNA arrays: an unexpected link between arginine and methionine metabolism in Bacillus subtilis, Genome Biology, vol.2, issue.6, p.research0019.1, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01219561

M. Sabaty, S. Grosse, G. Adryanczyk, S. Boiry, F. Biaso et al., Detrimental effect of the 6 His C-terminal tag on YedY enzymatic activity and influence of the TAT signal sequence on YedY synthesis, BMC Biochemistry, vol.14, issue.1, p.28, 2013.

J. M. Atack and D. J. Kelly, Contribution of the stereospecific methionine sulphoxide reductases MsrA and MsrB to oxidative and nitrosative stress resistance in the food-borne pathogen Campylobacter jejuni, Microbiology, vol.154, issue.8, pp.2219-2230, 2008.

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proceedings of the National Academy of Sciences, vol.97, issue.12, pp.6640-6645, 2000.

C. Andrieu, A. Vergnes, L. Loiseau, L. Aussel, and B. Ezraty, Characterisation of the periplasmic methionine sulfoxide reductase (MsrP) from Salmonella Typhimurium, Free Radical Biology and Medicine, vol.160, pp.506-512, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02995688