N. Yu and F. Capasso, Flat optics with designer metasurfaces, Nature Materials, vol.13, issue.2, pp.139-150, 2014.

S. Wang, P. C. Wu, V. Su, Y. Lai, M. Chen et al.,

J. Huang and . Wang, Nature nanotechnology, vol.13, p.227, 2018.

A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, and A. Faraon, Planar metasurface retroreflector, Nature Photonics, vol.11, issue.7, pp.415-420, 2017.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf et al., Metasurface holograms reaching 80% efficiency, Nature Nanotechnology, vol.10, issue.4, pp.308-312, 2015.

C. R. De-galarreta, A. M. Alexeev, Y. Au, M. Lopez-garcia, M. Klemm et al., Nonvolatile Reconfigurable Phase-Change Metadevices for Beam Steering in the Near Infrared, Advanced Functional Materials, vol.28, issue.10, p.1704993, 2018.

S. Cueff, D. Li, Y. Zhou, F. J. Wong, J. A. Kurvits et al., Dynamic control of light emission faster than the lifetime limit using VO2 phase-change, Nature Communications, vol.6, issue.1, p.1, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01489378

S. G. Carrillo, A. M. Alexeev, Y. Au, and C. D. Wright, Reconfigurable phase-change meta-absorbers with on-demand quality factor control, Optics Express, vol.26, issue.20, p.25567, 2018.

A. Howes, Z. Zhu, D. Curie, J. R. Avila, V. D. Wheeler et al., Optical Limiting Based on Huygens? Metasurfaces, Nano Letters, vol.20, issue.6, pp.4638-4644, 2020.

P. Hosseini, C. D. Wright, and H. Bhaskaran, An optoelectronic framework enabled by low-dimensional phase-change films, Nature, vol.511, issue.7508, pp.206-211, 2014.

M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard et al., Ultra-thin perfect absorber employing a tunable phase change material, Applied Physics Letters, vol.101, issue.22, p.221101, 2012.

J. Hendrickson, H. Liang, R. Soref, and J. Mu, Electrically actuated phase-change pixels for transmissive and reflective spatial light modulators in the near and mid infrared, Applied Optics, vol.54, issue.36, p.10698, 2015.

E. T. Hu, T. Gu, S. Guo, K. Y. Zang, H. T. Tu et al., Tunable broadband near-infrared absorber based on ultrathin phase-change material, Optics Communications, vol.403, pp.166-169, 2017.

X. Wang, W. Ding, H. Zhu, C. Liu, and Y. Liu, Tunable broadband, wide-angle, and polarization-dependent perfect infrared absorber based on planar structure containing phase-change material, Applied Optics, vol.57, issue.30, p.8915, 2018.

V. K. Mkhitaryan, D. S. Ghosh, M. Rudé, J. Canet-ferrer, R. A. Maniyara et al., Tunable Complete Optical Absorption in Multilayer Structures Including Ge2Sb2Te5without Lithographic Patterns, Advanced Optical Materials, vol.5, issue.1, p.1600452, 2016.

K. V. Sreekanth, S. Han, and R. Singh, Ge2 Sb2 Te5 -Based Tunable Perfect Absorber Cavity with Phase Singularity at Visible Frequencies, Advanced Materials, vol.30, issue.21, p.1706696, 2018.

Y. Guo, Y. Zhang, X. Chai, L. Zhang, L. Wu et al., Tunable broadband, wide angle and lithography-free absorber in the near-infrared using an ultrathin VO2 film, Applied Physics Express, vol.12, issue.7, p.071005, 2019.

Q. Wang, J. Maddock, E. T. Rogers, T. Roy, C. Craig et al., 1.7 Gbit/in.2 gray-scale continuous-phase-change femtosecond image storage, Applied Physics Letters, vol.104, issue.12, p.121105, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00341610

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang et al., Miniature Multilevel Optical Memristive Switch Using Phase Change Material, ACS Photonics, vol.6, issue.9, pp.2205-2212, 2019.

D. S. Gerber, R. Droopad, and G. N. Maracas, A GaAs/AlGaAs asymmetric Fabry-Perot reflection modulator with very high contrast ratio, IEEE Photonics Technology Letters, vol.5, issue.1, pp.55-58, 1993.

B. Sensale-rodriguez, R. Yan, S. Rafique, M. Zhu, W. Li et al., Extraordinary Control of Terahertz Beam Reflectance in Graphene Electro-absorption Modulators, Nano Letters, vol.12, issue.9, pp.4518-4522, 2012.

T. Sun, J. Kim, J. M. Yuk, A. Zettl, F. Wang et al., Surface-normal electro-optic spatial light modulator using graphene integrated on a high-contrast grating resonator, Optics Express, vol.24, issue.23, p.26035, 2016.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson et al., Resonant bonding in crystalline phase-change materials, Nature Materials, vol.7, issue.8, pp.653-658, 2008.

B. Huang and J. Robertson, Bonding origin of optical contrast in phase-change memory materials, Physical Review B, vol.81, issue.8, p.81204, 2010.

M. Zhu, O. Cojocaru-mirédin, A. M. Mio, J. Keutgen, M. Küpers et al., Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding, Advanced Materials, vol.30, issue.18, p.1706735, 2018.

J. Raty, M. Schumacher, P. Golub, V. L. Deringer, C. Gatti et al., A Quantum?Mechanical Map for Bonding and Properties in Solids, Advanced Materials, vol.31, issue.3, p.1806280, 2018.

M. A. Kats and F. Capasso, Optical absorbers based on strong interference in ultra-thin films, Laser & Photonics Reviews, vol.10, issue.5, pp.735-749, 2016.

Y. Long, R. Su, Q. Wang, L. Shen, B. Li et al., Deducing critical coupling condition to achieve perfect absorption for thin-film absorbers and identifying key characteristics of absorbing materials needed for perfect absorption, Applied Physics Letters, vol.104, issue.9, p.091109, 2014.

P. Yeh and M. Hendry, Optical Waves in Layered Media, Physics Today, vol.43, issue.1, pp.77-78, 1990.

J. Park, J. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, Dynamic Reflection Phase and Polarization Control in Metasurfaces, Nano Letters, vol.17, issue.1, pp.407-413, 2016.

T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial, Journal of the Optical Society of America B, vol.30, issue.6, p.1580, 2013.

H. Wang, Y. Yang, and L. Wang, Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer, Applied Physics Letters, vol.105, issue.7, p.071907, 2014.

Y. Chen, X. Li, X. Luo, S. A. Maier, and M. Hong, Tunable near-infrared plasmonic perfect absorber based on phase-change materials, Photonics Research, vol.3, issue.3, p.54, 2015.

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm et al., Design of practicable phase-change metadevices for near-infrared absorber and modulator applications, Optics Express, vol.24, issue.12, p.13563, 2016.

W. Dong, H. Liu, J. K. Behera, L. Lu, R. J. Ng et al., Wide Bandgap Phase Change Material Tuned Visible Photonics, Advanced Functional Materials, vol.29, issue.6, p.1806181, 2018.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara et al., Physical Review Letters, vol.104, 2010.

T. ?i?már and K. Dholakia, Exploiting multimode waveguides for pure fibre-based imaging, Nature Communications, vol.3, issue.1, 2012.

C. Grèzes-besset, G. Chauveau, and L. Pinard, Optical coatings for large facilities, Optical Thin Films and Coatings, pp.697-718, 2018.

B. Ellerbroek, M. Britton, R. Dekany, D. Gavel, G. Herriot et al., Adaptive optics for the Thirty Meter Telescope, Astronomical Adaptive Optics Systems and Applications II, vol.5903, p.590304, 2005.

B. L. Stamper, J. R. Angel, J. H. Burge, and N. J. Woolf, Imaging Technology and Telescopes, pp.126-136, 2000.

A. Borggräfe, J. Heiligers, M. Ceriotti, and C. R. Mcinnes, Distributed Reflectivity Solar Sails for Extended Mission Applications, Advances in Solar Sailing, pp.331-350, 2014.

S. A. Goorden, J. Bertolotti, and A. P. Mosk, Superpixel-based spatial amplitude and phase modulation using a digital micromirror device, Optics Express, vol.22, issue.15, p.17999, 2014.

V. Arrizón, G. Méndez, and D. Sánchez-de-la-llave, Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators, Optics Express, vol.13, issue.20, p.7913, 2005.

A. Joërg, F. Lemarchand, M. Zhang, M. Lequime, and J. Lumeau, Optical characterization of photosensitive AMTIR-1 chalcogenide thin layers deposited by electron beam deposition, Journal of Non-Crystalline Solids, vol.442, pp.22-28, 2016.

, Figure 1. PHF13 binds to DNA and recombinant nucleosomes., Minimum of reflectivity (in a)) and contrast C (in b)) at 1550 nm upon the change of phase of GST versus the thickness of top ITO and GST in a Au/ITO/GST/ITO layered systems, vol.5