R. Sivakumar, R. Rajendran, C. Balakumar, and M. Tamilvendan, Isolation, screening and optimization of production medium for thermostable laccase production from Ganoderma sp, Int. J. Eng. Sci. Technol, vol.2, pp.7133-7141, 2010.

R. Kumar, J. Kaur, S. Jain, and A. Kumar, Optimization of laccase production from Aspergillus flavus by design of experiment technique: Partial purification and characterization, Journal of Genetic Engineering and Biotechnology, vol.14, issue.1, pp.125-131, 2016.

P. Giardina, V. Faraco, C. Pezzella, A. Piscitelli, S. Vanhulle et al., Laccases: a never-ending story, Cellular and Molecular Life Sciences, vol.67, issue.3, pp.369-385, 2009.

N. Durán, M. A. Rosa, A. D?annibale, and L. Gianfreda, Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review, Enzyme and Microbial Technology, vol.31, issue.7, pp.907-931, 2002.

D. S. Arora and R. K. Sharma, Ligninolytic fungal laccases and their biotechnological applications, Appl. Biochem. Biotechnol, vol.160, pp.1760-1788, 2010.

F. Xu, Oxidation of Phenols, Anilines, and Benzenethiols by Fungal Laccases: Correlation between Activity and Redox Potentials as Well as Halide Inhibition?, Biochemistry, vol.35, issue.23, pp.7608-7614, 1996.

M. C. Saparrat, Estudio de la producción de lacasas fúngicas extracelulares en diferentes cepas autóctonas, vol.304, pp.145-150

F. Christopher, The structure and function of fungal laccase, Microbiology, p.19, 1994.

P. Baldrian, Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme, Applied Microbiology and Biotechnology, vol.63, issue.5, pp.560-563, 2004.

K. Li, F. Xu, and K. E. Eriksson, Comparison of Fungal Laccases and Redox Mediators in Oxidation of a Nonphenolic Lignin Model Compound, Applied and Environmental Microbiology, vol.65, issue.6, pp.2654-2660, 1999.

L. Munk, A. K. Sitarz, D. C. Kalyani, J. D. Mikkelsen, and A. S. Meyer, Can laccases catalyze bond cleavage in lignin?, Biotechnology Advances, vol.33, issue.1, pp.13-24, 2015.

G. Janusz, A. Pawlik, U. ?widerska-burek, J. Polak, J. Sulej et al., Laccase Properties, Physiological Functions, and Evolution, International Journal of Molecular Sciences, vol.21, issue.3, p.966, 2020.

F. Xu, W. Shin, S. H. Brown, J. A. Wahleithner, U. M. Sundaram et al., A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1292, issue.2, pp.303-311, 1996.

R. Bourbonnais and M. G. Paice, Oxidation of non-phenolic substrates, FEBS Letters, vol.267, issue.1, pp.99-102, 1990.

H. P. Call and I. Mücke, History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process), Journal of Biotechnology, vol.53, issue.2-3, pp.163-202, 1997.

P. Bajpai, P. K. Bajpai, and R. Kondo, Pulp Bleaching with Xylanases, Biotechnology for Environmental Protection in the Pulp and Paper Industry, pp.49-64, 1999.

W. P. Coleman, Laser and IPL Technology in Dermatologic and Aesthetic Medicine Edited By: Christian Raulin and Syrus Karsai Published by: Springer + Business Media Berlin, Heidelberg, Germany; 2011, Dermatologic Surgery, vol.38, issue.8, p.1390, 2012.

D. Wesenberg, I. Kyriakides, and S. N. Agathos, White-rot fungi and their enzymes for the treatment of industrial dye effluents, Biotechnology Advances, vol.22, issue.1-2, pp.161-187, 2003.

T. Vinodhkumar, N. Thiripurasundari, G. Ramanathan, and G. Karthik, Screening of dye degrading bacteria from textile effluents, J. Chem. Pharm. Res, vol.3, pp.848-857, 2013.

G. B. Michaels and D. L. Lewis, Sorption and toxicity of azo and triphenylmethane dyes to aquatic microbial populations, Environmental Toxicology and Chemistry, vol.4, issue.1, pp.45-50, 1985.

K. Chung and S. E. Stevens, Degradation azo dyes by environmental microorganisms and helminths, Environmental Toxicology and Chemistry, vol.12, issue.11, pp.2121-2132, 1993.

S. M. Ghoreishi and R. Haghighi, Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent, Chemical Engineering Journal, vol.95, issue.1-3, pp.163-169, 2003.

N. Santhanam, J. M. Vivanco, S. R. Decker, and K. F. Reardon, Expression of industrially relevant laccases: prokaryotic style, Trends in Biotechnology, vol.29, issue.10, pp.480-489, 2011.

Q. Yang, M. Zhang, M. Zhang, C. Wang, Y. Liu et al., Characterization of a Novel, Cold-Adapted, and Thermostable Laccase-Like Enzyme With High Tolerance for Organic Solvents and Salt and Potent Dye Decolorization Ability, Derived From a Marine Metagenomic Library, Frontiers in Microbiology, vol.9, 2018.

R. C. Bonugli-santos, M. R. Dos-santos-vasconcelos, M. R. Passarini, G. A. Vieira, V. C. Lopes et al., Marine-derived fungi: diversity of enzymes and biotechnological applications, Frontiers in Microbiology, vol.6, 2015.

P. J. Punt and C. A. Van-den-hondel, [39] Transformation of filamentous fungi based on hygromycin b and phleomycin resistance markers, Methods in Enzymology, vol.216, pp.447-457, 1992.

W. Ben-ali, D. Chaduli, D. Navarro, C. Lechat, A. Turbé-doan et al., Screening of five marine-derived fungal strains for their potential to produce oxidases with laccase activities suitable for biotechnological applications, BMC Biotechnology, vol.20, issue.1, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02928294

W. Ben-ali, D. Navarro, A. Kumar, E. Drula, A. Turbé-doan et al., Characterization of the CAZy Repertoire from the Marine-Derived Fungus Stemphylium lucomagnoense in Relation to Saline Conditions, Marine Drugs, vol.18, issue.9, p.461, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02953538

. Wikee, . Hatton, . Turbé-doan, . Mathieu, . Daou et al., Characterization and Dye Decolorization Potential of Two Laccases from the Marine-Derived Fungus Pestalotiopsis sp., International Journal of Molecular Sciences, vol.20, issue.8, p.1864, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02276821

M. M. Atalla, H. K. Zeinab, R. H. Eman, A. Y. Amani, and A. A. Abeer, Characterization and kinetic properties of the purified Trematosphaeria mangrovei laccase enzyme, Saudi Journal of Biological Sciences, vol.20, issue.4, pp.373-381, 2013.

P. H. Mainardi, V. A. Feitosa, L. B. Brenelli-de-paiva, R. C. Bonugli-santos, F. M. Squina et al., Laccase production in bioreactor scale under saline condition by the marine-derived basidiomycete Peniophora sp. CBMAI 1063, Fungal Biology, vol.122, issue.5, pp.302-309, 2018.

D. D?souza-ticlo, D. Sharma, and C. Raghukumar, A Thermostable Metal-Tolerant Laccase with Bioremediation Potential from a Marine-Derived Fungus, Marine Biotechnology, vol.11, issue.6, pp.725-737, 2009.

E. Record, P. J. Punt, M. Chamkha, M. Labat, C. A. Van-den-hondel et al., Expression of the Pycnoporus cinnabarinus laccase gene in Aspergillus niger and characterization of the recombinant enzyme, European Journal of Biochemistry, vol.269, issue.2, pp.602-609, 2002.

P. Baldrian, Fungal laccases ? occurrence and properties, FEMS Microbiology Reviews, vol.30, issue.2, pp.215-242, 2006.

C. Eggert, U. Temp, and K. E. Eriksson, The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase., Applied and environmental microbiology, vol.62, issue.4, pp.1151-1158, 1996.

K. Sun, F. Kang, M. G. Waigi, Y. Gao, and Q. Huang, Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid, Environmental Pollution, vol.220, pp.105-111, 2017.

K. Murugesan, Y. Kim, J. Jeon, and Y. Chang, Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum, Journal of Hazardous Materials, vol.168, issue.1, pp.523-529, 2009.

L. Lu, M. Zhao, T. Wang, L. Zhao, M. Du et al., Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04, Bioresource Technology, vol.115, pp.35-40, 2012.

J. Si, F. Peng, and B. Cui, Purification, biochemical characterization and dye decolorization capacity of an alkali-resistant and metal-tolerant laccase from Trametes pubescens, Bioresource Technology, vol.128, pp.49-57, 2013.

M. Siroosi, M. A. Amoozegar, and K. Khajeh, Purification and characterization of an alkaline chloride-tolerant laccase from a halotolerant bacterium, Bacillus sp. strain WT, Journal of Molecular Catalysis B: Enzymatic, vol.134, pp.89-97, 2016.

S. Wang, Y. Ning, S. Wang, J. Zhang, G. Zhang et al., Purification, characterization, and cloning of an extracellular laccase with potent dye decolorizing ability from white rot fungus Cerrena unicolor GSM-01, International Journal of Biological Macromolecules, vol.95, pp.920-927, 2017.

J. Yan, D. Chen, E. Yang, J. Niu, Y. Chen et al., Purification and characterization of a thermotolerant laccase isoform in Trametes trogii strain and its potential in dye decolorization, International Biodeterioration & Biodegradation, vol.93, pp.186-194, 2014.

S. B. Younes and S. Sayadi, Purification and characterization of a novel trimeric and thermotolerant laccase produced from the ascomycete Scytalidium thermophilum strain, J. Mol. Catal. B Enzym, vol.73, pp.35-42, 2011.

X. Xu, X. Huang, D. Liu, J. Lin, X. Ye et al., Inhibition of metal ions on Cerrena sp. laccase: Kinetic, decolorization and fluorescence studies, Journal of the Taiwan Institute of Chemical Engineers, vol.84, pp.1-10, 2018.

J. Bollag and A. Leonowicz, Comparative Studies of Extracellular Fungal Laccases, Applied and Environmental Microbiology, vol.48, issue.4, pp.849-854, 1984.

D. Slomczynski, J. P. Nakas, and S. W. Tanenbaum, Production and Characterization of Laccase from Botrytis cinerea 61-34., Applied and environmental microbiology, vol.61, issue.3, pp.907-912, 1995.

C. Johannes and A. Majcherczyk, Laccase activity tests and laccase inhibitors, Journal of Biotechnology, vol.78, issue.2, pp.193-199, 2000.

O. Milstein, A. Hüttermann, A. Majcherczyk, K. Schulze, R. Fründ et al., Transformation of lignin-related compounds with laccase in organic solvents, Journal of Biotechnology, vol.30, issue.1, pp.37-48, 1993.

J. Luterek, L. Gianfreda, M. Wojta?-wasilewska, N. S. Cho, J. Rogalski et al., Activity of Free and Immobilized ExtracellularCerrena unicolorLaccase in Water Miscible Organic Solvents, Holzforschung, vol.52, issue.6, pp.589-595, 1998.

A. Robles, R. Lucas, M. Mart??nez-cañamero, N. Ben-omar, R. Pérez et al., Characterisation of laccase activity produced by the hyphomycete Chalara (syn. Thielaviopsis) paradoxa CH32, Enzyme and Microbial Technology, vol.31, issue.4, pp.516-522, 2002.

I. Patel, D. Kracher, S. Ma, S. Garajova, M. Haon et al., Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6, Biotechnology for Biofuels, vol.9, issue.1, 2016.

Z. Li, S. Jiang, Y. Xie, Z. Fang, Y. Xiao et al., Mechanism of the salt activation of laccase Lac15, Biochemical and Biophysical Research Communications, vol.521, issue.4, pp.997-1002, 2020.

M. Kern, J. E. Mcgeehan, S. D. Streeter, R. N. Martin, K. Besser et al., Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance, Proceedings of the National Academy of Sciences, vol.110, issue.25, pp.10189-10194, 2013.

S. Paul, S. K. Bag, S. Das, E. T. Harvill, and C. Dutta, Molecular signature of hypersaline adaptation: insights from genome and proteome composition of halophilic prokaryotes, Genome Biology, vol.9, issue.4, p.R70, 2008.

J. K. Lanyi, Salt-dependent properties of proteins from extremely halophilic bacteria., Bacteriological Reviews, vol.38, issue.3, pp.272-290, 1974.

C. L. Gordon, V. Khalaj, A. F. Ram, D. B. Archer, J. L. Brookman et al., Glucoamylase::green fluorescent protein fusions to monitor protein secretion in Aspergillus niger, Microbiology, vol.146, issue.2, pp.415-426, 2000.

W. Van-hartingsveldt, I. E. Mattern, C. M. Van-zeijl, P. H. Pouwels, and C. A. Van-den-hondel, Development of a homologous transformation system for Aspergillus niger based on the pyrG gene, Molecular and General Genetics MGG, vol.206, issue.1, pp.71-75, 1987.

R. C. Edgar, MUSCLE: A multiple sequence alignment method with reduced time and space complexity, BMC Bioinformatics, vol.5, issue.1, p.113, 2004.

S. Chojnacki, A. Cowley, J. Lee, A. Foix, and R. Lopez, Programmatic access to bioinformatics tools from EMBL-EBI update: 2017, Nucleic Acids Research, vol.45, issue.W1, pp.W550-W553, 2017.

J. J. Armenteros, K. D. Tsirigos, C. K. Sønderby, T. N. Petersen, O. Winther et al., SignalP 5.0 improves signal peptide predictions using deep neural networks, Nat. Biotechnol, vol.37, pp.420-423, 2019.

C. Steentoft, S. Y. Vakhrushev, H. J. Joshi, Y. Kong, M. B. Vester-christensen et al., Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology, The EMBO Journal, vol.32, issue.10, pp.1478-1488, 2013.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nature Protocols, vol.10, issue.6, pp.845-858, 2015.