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SUMMARY

The nucleus accumbens (NAc) plays a key role in drug-related behavior and natural reward learning.

Synaptic plasticity in dopamine D1 and D2 receptor medium spiny neurons (MSNs) of the NAc and

the endogenous cannabinoid (eCB) system have been implicated in reward seeking. However, the pre-

cise molecular and physiological basis of reward-seeking behavior remains unknown. We found that

the specific deletion of metabotropic glutamate receptor 5 (mGluR5) in D1-expressingMSNs (D1miRm-

GluR5 mice) abolishes eCB-mediated long-term depression (LTD) and prevents the expression of drug

(cocaine and ethanol), natural reward (saccharin), and brain-stimulation-seeking behavior. In vivo

enhancement of 2-arachidonoylglycerol (2-AG) eCB signaling within the NAc core restores both

eCB-LTD and reward-seeking behavior in D1miRmGluR5 mice. The data suggest a model where the

eCB and glutamatergic systems of the NAc act in concert to mediate reward-seeking responses.

INTRODUCTION

The brain reward system mediates motivational responses to natural rewards such as drinking, eating, and

reproduction. Reinforcement learning for natural rewards depends on the formation of long-lasting condi-

tioned associations that result in reward-seeking responses. This form of learning involves synaptic plas-

ticity within the reward system, notably in medium spiny neurons (MSNs) of the nucleus accumbens

(NAc) (Russo et al., 2010; Lüscher and Malenka, 2011). Drugs of abuse also act through the reward system,

but the extent to which drug rewards and natural rewards share common neurobiological mechanisms

within the reward system is barely studied.

One mechanism by which drugs of abuse alter synaptic plasticity in the reward system involves endocan-

nabinoids (eCB). Stimulation of prelimbic cortex afferents at naturally occurring frequencies can cause

long-term depression (LTD) of NAc glutamatergic synapses—an effect mediated by eCB release and pre-

synaptic cannabinoid type 1receptor (CB1R) (Robbe et al., 2002; Zlebnik and Cheer, 2016; Araque et al.,

2017). This form of eCB-mediated synaptic plasticity in the NAc depends on postsynaptic metabotropic

glutamate receptor 5 (mGluR5) and is eliminated following exposure to drugs of abuse (Mato et al.,

2004; Fourgeaud et al., 2004; Zlebnik and Cheer, 2016).

Although a direct involvement of this particular form of plasticity in reinforcement learning has so far not

been demonstrated, there is increasing evidence that bothmGluR5 and CB1R are critical for the expression

of eCB-induced LTD and are involved in reward-seeking responses. Thus systemic pharmacological

blockade of mGluR5 (Bäckström et al., 2004; Olive, 2009; Wang et al., 2013; Mihov and Hasler, 2016) or

CB1R (De Vries et al., 2001; Cippitelli et al., 2005) reduces cue-induced reinstatement of drug-seeking re-

sponses. mGluR5 blockade also increases intracranial self-stimulation (ICSS) thresholds, suggesting a

deficit in brain reward function (Cleva et al., 2012). The anatomical loci and neuronal mechanisms underly-

ing these effects of CB1R and mGluR5 antagonists are still not well defined, but a specific role of CB1R in

the NAc has been demonstrated for cocaine-, heroin-, and nicotine-seeking behavior in rodents (Xi et al.,

2006; Kodas et al., 2007; Alvarez-Jaimes et al., 2008). LikewisemGluR5 in the NAc is also critically involved in

drug-seeking behavior. Thus genetic deletion of mGluR5 in the NAc (Novak et al., 2010), intra-NAc admin-

istration of a selective mGluR5 antagonist (Knackstedt et al., 2014), and pharmacological inhibition of

mGluR5 signaling via Homer proteins reduce cue-induced cocaine-seeking (Wang et al., 2013). Further-

more, combining sub-threshold doses of mGlu5R and CB1R antagonists also prevents alcohol-

seeking behavior (Adams et al., 2010), suggesting an interaction between these two systems in mediating
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drug-seeking behavior. mGluR5 and CB1R blockade may also reduce seeking for food and other natural

rewards. However, these findings are less consistent compared with those using drug rewards (Fattore

et al., 2007; Sanchis-Segura et al., 2004; Olive, 2009; Sinclair et al., 2012; Watterson et al., 2013; Schmidt

et al., 2015; Mihov and Hasler, 2016).

Two fundamental but unresolved issues are whether eCB-mediated synaptic plasticity that depends on

presynaptic CB1R and postsynaptic mGluR5 in the NAc is causally involved in drug-seeking responses

and whether the extent to which these synaptic changes also mediate natural reward-seeking re-

sponses; i.e., is there a common or distinct synaptic mechanism involved in drug and natural

reward-seeking behavior. Here we mainly focused on e-CB-mediated synaptic plasticity in dopamine

D1-receptor-containing MSNs, as several studies (Calipari et al., 2016; Hikida et al., 2010; Lobo and

Nestler, 2011; Ma et al., 2018; Soares-Cunha et al., 2016) suggest that this neuronal population seems

to be more likely involved in the formation of drug/natural reward-seeking behavior than D2-containing

MSNs.
RESULTS

mGluR5 in D1-Containing Neurons Mediate Drug- and Natural Reward-Seeking Behavior

Using a conditional mouse model with a knockdown of mGluR5 in dopamine D1-receptor-containing neu-

rons (D1miRmGluR5 mice), we recently demonstrated that mGluR5 in this specific neuronal population me-

diates cue-induced reinstatement of cocaine-seeking behavior (Novak et al., 2010). Using this mouse

model, we further asked if reward-seeking responses toward other drugs of abuse and natural rewards

are also affected by this selective deletion of mGluR5 in D1-containing neurons. We first assessed

ethanol-seeking responses in the reinstatement paradigm. D1miRmGluR5 mutants and wild-type litter-

mates were trained under operant conditions. According to our standard protocol (Eisenhardt et al.,

2015) mice were then trained for 15 days in 30-min sessions to lever press for ethanol with the presentation

of contextual cues (S+/CS+) predictive of ethanol availability. All mice acquired stable lever pressing for

ethanol (Figure S1A, two-way ANOVA, genotype effect: F(1,22) = 0.3, p = 0.6; genotype 3 time interaction:

F(14,308) = 1.2, p = 0.3). Likewise, no genotype difference was observed during a 15-day extinction phase

(Figure S1B, two-way ANOVA, genotype effect: F(1,22) = 0.2, p = 0.7; session effect: F(14,308) = 9.3, p <

0.0001). One day after the last extinction session, mice were tested for cue-induced reinstatement of

ethanol seeking. The presentation of S+/CS+ significantly reinstated ethanol-seeking behavior in wild-

type mice—an effect that was absent in mutant mice (Figure 1A left, two-way ANOVA, genotype:

F(1,22) = 6.1, p < 0.05, cue F(2,44) = 41.6, p < 0.0001, and a cue 3 genotype interaction effect: F(2,44) = 5.5,

p < 0.01). These findings extend our previous observation of a similar phenotype with cocaine-associated

cues (Novak et al., 2010) and demonstrate that mGluR5 in D1 neurons is a mediator of drug/cue memories

and drug-seeking responses.

We next examined whether mGluR5 in D1 neurons is involved in the general processing of conditioned

reward-seeking responses. For this purpose, a second group of mice was tested for its seeking behavior

toward saccharin, a natural reward. During acquisition and extinction phases, again no genotype differ-

ences were observed for saccharin responding (Figure S1B and S1C two-way ANOVA, genotype effect:

F(1,27) = 0.8, p = 0.8 for acquisition and genotype effect: F(1,27) = 2.2, p = 0.1 for extinction). Presentation

of the S+/CS+ stimuli triggered reinstatement of saccharin-seeking behavior in wild-type mice but not in

D1miRmGluR5 mice (Figure 1B left, two-way ANOVA, genotype: F(1,27) = 10.7, p < 0.005, cue F(2,54) =

40.6, p < 0.0001, and a cue 3 genotype interaction effect: F(2,54) = 7.5, p < 0.005) demonstrating that

mGluR5 in D1 neurons is also critical for natural reward-seeking responses.

Systemic administration of mGluR5 antagonists also reduces drug-seeking responses as well as saccharin-

seeking responses (Bäckström et al., 2004; Olive, 2009; Watterson et al., 2013; Mihov and Hasler, 2016). If

mGluR5 in D1-containing neurons would solely contribute to this systemic drug effect, reward-seeking re-

sponses in D1miRmGluR5 mice should not further be affected by mGluR5 antagonist. Therefore, we studied

the effects of 2-methyl-6-(phenylethynyl)pyridine (MTEP 20 mg/kg) on cue-induced reinstatement of

ethanol and saccharin seeking in our mutant mice. As expected, in comparison to vehicle, MTEP reduced

the reinstatement response for ethanol-seeking behavior and saccharin-seeking behavior in wild-type

mice. However, MTEP had no further effect in D1miRmGluR5 mice on the already reduced reinstatement

(Figure 1A right, two-way ANOVA, treatment effect F(1,10) = 6.7; p < 0.05 and Figure 1B right, treatment ef-

fect F(1,27) = 48.6; p < 0.0001).
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Figure 1. mGluR5 in D1-Containing Neurons Mediates Drug and Natural Reward-Seeking Behavior

Selective genetic deletion of mGluR5 in D1 neurons results in a lack of cue-induced reinstatement of drug- (ethanol (A,

left)) and natural (saccharin (B, left); brain stimulation (C)) reward-seeking behavior. Effect of systemic mGluR5 inhibition

(MTEP, 20mg/kg, i.p.) on cue-induced reinstatement of ethanol- (A, right) and saccharin (B, right)-seeking behavior in

wild-type (n = 6–14) and D1miRmGluR5 (n = 6–14) mice. The lower panel shows the brain stimulation data. During the

testing phase of 15 descending frequencies, the first five frequencies were defined as the ‘‘seeking’’ component and the

remaining 10 as the ‘‘extinction’’ component (left part). The seeking component of the rate frequency curve (C, middle)

and the maximal reinforcement rate (maximum control rate (MCR), C, right) were significantly reduced in the

D1miRmGluR5 (n = 13) mice compared with wild-type (n = 18) mice. All data represent mean from 15 mice +SEM. Two-way

ANOVA; (*) and (**) corresponds to p < 0.05 and 0.0005, respectively vs. extinction, vehicle treatment (A and B) or the first

five frequencies (141–89 Hz)/seeking (C); (#), (##) p < 0.05 and 0.0005 vs. wild-type mice, respectively.
We further tested a third group of mutant mice for brain stimulation reward using the ICSS paradigm (Bil-

bao et al., 2015). Following ICSS training animals underwent the testing phase of 15 descending fre-

quencies and all mice showed the expected frequency-dependent decrease in the number of stimulations

per trial, which became significant from the sixth frequency on (Figure 1C, left, frequency effect F(14,406) =

119.2; p < 0.0001). Because lower frequencies are less rewarding, and after having observed that from the

sixth frequency on the performance of the mice started to decline, we defined the first five frequencies as

the ‘‘seeking’’ component of the test and the remaining 10 as the ‘‘extinction’’ component. During the

‘‘seeking’’ component the performance of the D1miRmGluR5 mice was significantly lower than the response

rate of the wild-type mice (genotype 3 frequency interaction effect F(14,406) = 2.5; p < 0.01), whereas the

‘‘extinction’’ component was similar in all mice, performing 40% (similar to the extinction in operant condi-

tions) of the baseline (Figure 1C, middle). Furthermore, compared with wild-type, D1miRmGluR5 mice also

showed a significantly lower reinforcement rate (Figure 1C, right, t (25) = 2.1; p < 0.05).

Finally, given the well-known crosstalk betweenmGluR5 in theMSN and presynaptic CB1R, we also studied

the effects of the CB1R antagonist AM251 on cue-induced reinstatement of saccharin-seeking behavior in

both wild-type andmutant mice. Similar toMTEP, systemic administration of AM251 reduced the reinstate-

ment in wild-type mice, but not in D1miRmGluR5 mice (Figure S2, treatment effect F(1,27) = 15.3; p < 0.001

and treatment3 genotype interaction effect F(1,27) = 27.6; p < 0.0001). In order to show that CB1R within the

NAc is responsible for the observed effect in wild-type mice, a separate group of wild-type mice received

an intra-accumbal administration of AM251. Again this brain-site-specific blockade of CB1R also reduced

cue-induced reinstatement of saccharin seeking behavior (Figure S3, t(8) = 3.7, p < 0.01).
iScience 23, 100951, March 27, 2020 3



Figure 2. mGluR5 and CB1R in D1 Neurons Mediate eCB-LTD

(A) Genetic downregulation of mGluR5 selectively in D1-MSNs abolishes eCB-mediated long-term depression in the

NAc. Average time courses of mean EPSC (represented as percentage of the basal value) showing that in NAc slices

prepared from wild-type (WT) and D1miRmGluR5 mice, low-frequency stimulation (10 min 10 Hz, indicated by arrow)

induced LTD in WT (n = 6, blue circles) but not in D1miRmGluR5 mice (n = 16, red circles). Error bars indicate SEM, n =

individual mouse. Adjacent to the timecourse, individual experiments (blue and red symbols) and group average (black

symbols) before (baseline) and after LTD induction are shown. LTD was present in slices from WT mice (on the left) but in

contrast, LTD was absent in D1miRmGluR5 mice (on the right). Error bars indicate SEM, n = individual mouse, *p < 0.05,

Mann-Whitney U-test.

(B) eCB-LTD is induced in MSNs from both the direct (D1 red) and indirect (D2 orange) pathways in wild-type mice.

Retrogradely labeled direct and indirect pathway MSNs (see methods) were visualized by IR-DIC/epifluorescence

microscopy and patch clamped.

(C) In D1miRmGluR5 mice, eCB-LTD is selectively abolished in D1+ neurons, as 10-min Hz stimulation (arrow) induces LTD

only in D1� (presumably D2+) NAc MSNs (empty red symbols) but is absent in D1+ neurons (filled red circles).

(D) In contrast, bath application of the specific mGluR2/3 agonist, LY379268 (100nM), induces a profound LTD of fEPSP of

similar amplitude in NAc of wild-type or D1miRmGluR5 mice. Average time courses of mean EPSC/fEPSP are represented

as percentage of basal value.
In summary, mGluR5 in D1-containing neurons mediate in interaction with presynaptic CB1R cocaine-

(Novak et al., 2010), ethanol-, saccharin-, and brain-stimulation-seeking responses. However, motor,

emotional, and cognitive components can potentially affect reward-seeking responses (Sanchis-Segura

and Spanagel, 2006). Therefore, in a series of control experiments, mice were tested for spontaneous lo-

comotor activity, habituation to novelty, anxiety, short-term memory, and other D1-dependent responses.

With the exception of a faster habituation to a novel environment (Figure S4B), all tested motor, emotional,

or cognitive behaviors were normal in D1miRmGluR5 mice (Figure S4). Next we asked the question which

synaptic mechanism could underlie the general lack of reward-seeking responses in D1miRmGluR5 mice.
mGluR5 in D1 Neurons Mediates eCB-LTD

We and others have shown that eCB-LTD requires the postsynaptic activation of mGluR5 to initiate retro-

grade eCB signaling (Robbe et al., 2002; Katona and Freund, 2012; Zlebnik and Cheer, 2016; Araque et al.,

2017). Therefore, we examined basal synaptic transmission and eCB-mediated LTD in D1miRmGluR5mice in

NAc slices. Stimulation mimicking naturally occurring frequencies in NAc MSNs reliably induced a robust

eCB-LTD in wild-type but not in D1miRmGluR5 mice (Figure 2A). Given that the deletion of mGluR5 is spe-

cific to D1-containing neurons (Novak et al., 2010), we suggest that the lack of eCB-LTD in D1miRmGluR5

mice contributes to the lack of reward seeking in these mice.

Previous reports showed also a prominent eCB-LTD in D2-MSNs in NAc (e.g. Shen et al., 2008; Kreitzer and

Malenka, 2007; Grueter et al., 2010; Nazzaro et al., 2012), and this neuronal population may also contribute
4 iScience 23, 100951, March 27, 2020



to reward-seeking responses (Soares-Cunha et al., 2016). We addressed this issue by specific labeling of

MSNs that belong to either the indirect or direct dopamine pathways by using retrobeads. We patched

retrogradely labeled direct (thereafter named D1-MSN) and indirect pathway (thereafter named D2-

MSN) in wild-type mice and compared the capability of LTD induction in D1-or D2-MSNs in both wild-

type and D1miRmGluR5 mice. In line with what has been previously shown eCB-LTD was expressed in direct

and indirect pathway MSNs in wild-type animals (Figure 2B). Furthermore, in D1miRmGluR5 mice eCB-LTD

was only present in D2-MSNs but not in D1-MSNs (Figure 2C). Taken together, these results suggest that

eCB-LTD can be observed in both D1- and D2-MSNs and that we observe a selective lack of eCB-LTD in

D1miRmGluR5 mice. If eCB-LTD in D2-MSNs would contribute to a decrease in reward-seeking responses,

systemic or accumbal mGluR5 and presynaptic CB1R blockade should have led to an additional decline of

responding in D1miRmGluR5 mice. This, however, was not the case (Figures 1, S2, and S3), which led us to

the conclusion that eCB-LTD in D2-MSNs play no or an insignificant role in processing of reward-seeking

responses, which is also in line with previous studies (Calipari et al., 2016; Hikida et al., 2010; Lobo and

Nestler, 2011; Ma et al., 2018; Soares-Cunha et al., 2016).

We have previously shown that both CB1R and mGluR2/3 receptors share the same presynaptic machinery

to induce LTD (Mato et al., 2005). To test if mGluR2/3-induced LTD is altered in D1miRmGluR5 mice we

examined excitatory postsynaptic currents (EPSCs) in NAc MSNs following bath application of the

mGluR2/3 agonist LY379268 and did not observe any genotype difference in LTD induction (Figure 2D),

showing that the presynaptic LTD machinery is normal in D1miRmGluR5 mice.

Covariance of presynaptic CB1R functionality and eCB-LTD has been previously reported (Mato et al., 2004;

Lafourcade et al., 2011). Thus, we thought to evaluate presynaptic CB1R efficiency in D1miRmGluR5 mice.

The dose-response curve for the inhibition of evoked synaptic transmission in response to bath perfusion of

the CB1R agonist CP55,940 was shifted to the right in NAc synapses of D1miRmGluR5 mice compared with

wild-types (Figure 3J; CP55, 940 0.1 mM; p < 0.05) but the maximal inhibition was not significantly reduced

(CP55, 940 10 mM; p = 0.54). Basal synaptic transmission was also not altered, as administration of a CB1R

antagonist did not affect the basal synaptic transmission of both genotypes (Figure S5). These results sug-

gest reduced CB1R expression in D1miRmGluR5 mice. We thus set out to study possible alteration in the

eCB machinery on the ultrastructural level in our genetic mouse model.
Deletion of eCB-LTD in the NAc Is a Consequence of AugmentedMAGL Activity and Reduced

CB1R Expression

CB1R and other components of the eCB system, such as the key enzymes monoacylglycerol lipase (MAGL)

(Pan et al., 2011) and diacylglycerol lipase-a (DAGL-a) (Gao et al., 2010), as well as 2-arachidonylglycerol (2-

AG) and other eCBs may have been influenced by the constitutive deletion of eCB-LTD in our genetic

model. Here we used electron microscopy to analyze the distribution of CB1R, DAGL-a, and MAGL and

mass spectrometry to quantify eCBs levels in the NAc of both wild-type and mutant mice.

As described previously (Puente et al., 2011), CB1R labeling was localized at presynaptic terminals making

asymmetric synapses with dendritic spines and small dendrites (Figures 3A and 3D). A significant reduction

of CB1R immunoparticles in D1miRmGluR5 mice compared with wild-type mice was found on the ultrastruc-

tural level within the NAc (Figure 3A, 3D, and 3G, t(13) = 5.2, p <0.0005). Hence, reduced presynaptic expres-

sion of CB1R correlates with the reduced inhibition of CB1R-dependent excitatory transmission observed

in the mutants (Figure 3J). The distribution of DAGL-a and presynaptic MAGL was in agreement with the

subcellular pattern in other brain structures (Puente et al., 2011): DAGL-a immunolabeling was mostly

distributed in spine head membranes postsynaptic to asymmetric synapses (Figures 3B and 3E), and

MAGL immunoparticles were in membranes of excitatory synaptic terminals (Figures 3C and 3F). The

proportion of immunoparticles for DAGL-a and presynaptic MAGL did not differ between genotypes

(Figure 3G). MAGL was also found at dendritic spines, where it was significantly higher expressed in the

mutants (Figure 3G, t(14) = 2.5, p < 0.05). The significance of a differential distribution of this enzyme

(pre- and postsynaptically) and the apparent paradox of increased postsynaptic expression with no

changes in DAGL-a is not clear and might indicate non-overlapping functions of this enzyme, which could

enable the establishment of two different pools of 2-AG, pre-stored and released, as it has been already

suggested (Alger and Kim, 2011). Nevertheless, any possible functional relevance of increased postsyn-

aptic MAGL activity in D1miRmGluR5 to eCB- mediated LTD is unlikely, as the hydrolysis by means of pre-

synaptic MAGL has been proposed as a primary mechanism for 2-AG inactivation (Dinh et al., 2002).
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Figure 3. Ultrastructural Changes in the NAc in D1miRmGluR5 Mice

(A–F) Ultrastructural immunolocalization of CB1R, DAGLa, and MAGL in the NAc of wild-type (n = 3, A–C) and

D1miRmGluR5 (n = 3, D–F) mice assessed by preembedding silver-intensified immunogold method for electron

microscopy. (A and D) CB1R immunoparticles (arrows) are distributed on perisynaptic and extrasynaptic membranes of

axon terminals (ter) that make asymmetric synapses with dendritic spines (sp). (B and E) DAGLa immunolabeling is

localized in dendritic spine membranes (arrows) away from the postsynaptic densities of asymmetric synapses. (C and F)

MAGL shows a presynaptic and postsynaptic localization (arrows) on membranes of asymmetric presynaptic boutons and

dendritic spines, respectively.

(G) Proportion of presynaptic and postsynaptic profiles labeled by each antibody for wild-type and D1miRmGluR5 mutant

mice. D1miRmGluR5 mice have fewer excitatory synaptic terminals with CB1R but more postsynaptic elements with MAGL

receiving asymmetric synapses than wild-type mice.

(H and I) Basal eCB concentrations of 2-arachidonoyl glycerol (2-AG, H) and anandamide (AEA, I) in the NAc are not

affected in control (n = 10) and D1miRmGluR5 mice (n = 10).

(J) Bath application of the cannabinoid agonist, CP55, 940, induces a dose-dependent inhibition of evoked fEPSPs

recorded in the NAc synapses of wild-type mice, whereas in D1miRmGluR5, there is a shift to the right of the dose-

response curve.

Two-way ANOVA, (#) p < 0.05, (##) p < 0.0005 vs. wild-type. Scale bars 0.5 mm (A–G); picomoles or nanomoles/gram wet

tissue +SEM (H and I).
The basal un-stimulated endogenous concentrations of 2-AG and anandamide (AEA) were normal in D1miRm-

GluR5mice (Figures 3H and 3I: 2-AG: t(18) = -0.3, p = 0.7; AEA: t(18) = -0.2, p = 0.8). Neither 2-AG andAEA nor the

metabolites 1-arachidonoyl glycerol (1-AG), arachidonic acid (AA), and other eCB congener concentrations,

including oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), (Figure S6) were affected. This finding

is in line with the overall normal expression levels of the key enzymes in themutant mice and supports the asser-

tion that 2-AG levels are solely determined by the balance between production (DAGL- a) and presynaptic

degradation by MAGL (Ohno-Shosaku et al., 2012). In summary, these ultrastructural data show that an

augmented postsynaptic MAGL activity, combined with reduced CB1R and a lack of mGluR5, is the molecular

alterations that result in a lack of eCB-LTD. One possibility to counteract these molecular alterations and to

restore eCB-LTD is by increasing 2-AG levels (Bosch-Bouju et al., 2016).

Enhancement of eCB Signaling Restores eCB-LTD and Reward-Seeking Responses in

D1miRmGluR5

The MAGL inhibitor JZL184 produces a selective blockade of 2-AG hydrolysis and thereby leads to an in-

crease in 2-AG levels (Long et al., 2009; Bosch-Bouju et al., 2016). JZL184 (1 mM) restored eCB-LTD in the
6 iScience 23, 100951, March 27, 2020



Figure 4. Rescue of Genetically Abolished eCB-LTD and Reward-seeking Behavior

(A) Average time-courses of mean EPSC (represented as percentage of the basal value) showing that in NAc slices

prepared from D1miRmGluR5 mice, low-frequency stimulation (10min 10 Hz, indicated by arrow) induced LTD in the

presence of the MAGL inhibitor, JZL184 (1mM, red triangles, n = 5 mice) but not in untreated slices (red circles, n = 16

mice). Adjacent to the timecourse, individual experiments (red symbols) and group average (black symbols) before

(baseline) and after LTD induction are shown. LTD is absent in untreated slices (on the left). In contrast, LTD was present in

slices pretreated with JZL184 (on the right). Error bars indicate SEM, n = individual mouse, *p < 0.05, Mann-Whitney U-

test.
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Figure 4. Continued

(B) Effects of MAGL inhibition on cue-induced reinstatement of saccharin-seeking behavior. Increasing 2-AG levels by

administration of the MAGL inhibitor JZL 184 (16 mg/kg, i.p.; n = 15), produces a complete rescue of the reinstatement

response in the D1miRmGluR5 mice.

(C–F) (C) Intra-accumbal administration of JZL 184 into the NAc core of D1miRmGluR5 mice resulted in a dose-dependent

rescue of the reinstatement response. Behaviorally, pharmacological blockade of eCB-LTD by cocaine (n = 6–7) or the

CB1 agonist CP55,940 (n = 7) selectively abolished saccharin-seeking behavior triggered by the conditioned cues in wild-

type mice (D, E), whereas it did not affect saccharin self-administration (F).

(G) Accumbal D1 eCB-LTD is the physiological substrate for reward-seeking behavior. Graphic summary (G) showing the

mechanism of reward seeking driven by accumbal D1-eCB-LTD. (Left) Presentation of the conditioned cue stimulates

prefrontal cortico-accumbal glutamatergic neurons, glutamate is released into the synaptic space, and stimulation of

mGluR5 of D1-containing MSNs triggers the synthesis and release of 2-AG through the DAGL pathway (blue arrows).

Released 2-AG retrogradely activates CB1Rs in the presynaptic neuron (blue arrow), which in turn results in LTD, and thus

a persistent reduction of synaptic neurotransmission (glutamate release, red arrow). This reduction on synaptic

transmission might induce a ‘‘craving’’ state and participate to the seeking response. (Right) In D1miRmGluR5,

presentation of the cue activates mGluR5-dependent perisynaptic signaling machinery (the synthesis and release of 2-AG

through the diacylglycerol pathway) only in D2 neurons, not in D1 neurons. Without this D1-dependent LTD, seeking

behavior is not triggered. Blue arrows indicate activation, and red arrows indicate inhibition.

All data represent mean G SEM. Two-way ANOVA, (*) p < 0.05 and (**) p < 0.01 vs. vehicle treatment, respectively.
NAc in D1miRmGluR5 (Figure 4A). Likewise, systemic application of JZL184 prior to the reinstatement led to

a saccharin-seeking response in D1miRmGluR5 mice (Figure 4B, t (2.8) = �2.8, p < 0.05), which was compa-

rable to the one observed in wild-type mice. In wild-type mice the reinstatement response was attenuated

by JZL184 (Figure S7, t (13) = 9.2, p < 0.0001), possibly due to the functional desensitization of CB1R in

response to elevated 2-AG levels (Long et al., 2009) or due to the rewarding properties of enhanced endog-

enous 2-AG levels (Justinova et al., 2005), and subsequent CB1R stimulation. As a proof of concept exper-

iments, we sought to demonstrate a direct role of the NAc by infusing JZL184 into this brain site. JZL184

dose-dependently restored the reinstatement response (Figure 4C, t (7) = 3.4, p < 0.05 and t (7) = 4.4,

p < 0.01 for 1.6 and 3mg/0.5mL, respectively). Taken together, these data show that increasing 2-AG levels

and thereby CB1R signaling in the NAc restores e-CB-LTD in D1miRmGluR5 mice and subsequently reward-

seeking responses.

If eCB-LTD in D1-containing neurons is the physiological substrate of reward-seeking behavior, one should

be able to manipulate reward-seeking by prior drug administration. Thus, it has been shown that already a

single in vivo exposure to cocaine (Fourgeaud et al., 2004) or D9-THC (Mato et al., 2004) abolishes eCB-LTD

in the NAc. Therefore, acute drug treatment that ablates eCB-LTD should impede reward seeking in wild-

type mice. Indeed, a single cocaine or CP55,940 injection 24 h before reinstatement testing—a protocol

that abolishes eCB-LTD—selectively inhibited cue-induced saccharin-seeking responses (Figure 4D,

ANOVA, for cocaine: reinstatement effect: F(2,22) = 11.9, p < 0.001; reinstatement 3 treatment interaction

effect: F(4,34) = 4.5, p < 0.01; Figure 4E, for CP55,940: reinstatement effect: F(2,26) = 16.9, p < 0.0001; rein-

statement 3 treatment interaction effect: F(2,26) = 7.7, p < 0.005) but not self-administration (Figure 4F,

self-administration effect: F(1,11) = 3.7, p = 0.08; treatment effect: F(1,11) = 0.3, p = 0.6) in wild-type mice.

This is a finding with clinical implications, as it would suggest that acute forced drug administration abol-

ishes craving for an alternative reinforcer on subsequent days. This observation deserves closer investiga-

tions, especially in relevance for human drug-taking behavior.
DISCUSSION

Here we propose a model (Figure 4G) in which the presentation of drug-conditioned cues activate excit-

atory afferents to the NAc and facilitate drug and natural reward-seeking responses by encoding

reward-associated cues (Britt et al., 2012). This excitation leads to an increase of accumbal glutamate trans-

mission (Kalivas, 2009) and activation of postsynaptic mGluR5 on D1-MSNs. Subsequent mGluR5-mediated

eCB-LTD within the NAc leads then to an inhibition of cue-induced glutamate release and finally to a state

of seeking for the reward-associated cue. The selective inhibition of glutamate transmission might not take

place when key players such as CB1R and mGluR5 are pharmacologically blocked or genetically manipu-

lated as in our D1miRmGluR5 mutants. Hence in D1miRmGluR5 mice, presentation of a reward-associated

cue does not activate the mGluR5-dependent perisynaptic signaling machinery; i.e., the synthesis and

release of 2-AG through the diacylglycerol pathway (Hashimotodani et al., 2007). A downregulation of

CB1R from glutamatergic terminals ultimately results in an impairment of long-term control of glutamate
8 iScience 23, 100951, March 27, 2020



release by a lack of D1-MSN mediated LTD induction. Without this LTD, seeking behavior in these mutant

mice is not triggered.

Our data are compatible with the idea that both D1- and D2 (as well as D1/D2)-expressing neurons produce

2-AG in theNAc.We propose that in wild-typemice, D1 andD1/D2MSNs are a principal source of the 2-AG

that mediates eCB-LTD and reward-seeking responses. In our D1miRmGluR5 mutants, the production of 2-

AG is insufficient to reach the threshold of LTD induction. In the presence of JZL184, 2-AG is augmented

and sufficient to trigger LTD. This idea in line with a recent study shows that mGluR5 antagonism inhibits

cocaine reinforcement and relapse by elevation of extracellular glutamate in the NAc via a CB1 receptor

mechanism (Li et al., 2018).

The possibility that D2-MSN in the NAc core could have also contributed to the alterations in reward-

seeking responses in mutant mice is unlikely because a previous study by Anderson et al. (2006) showed

that cooperative activation of D1-like and D2-like dopamine receptors is required for the reinstatement

of a drug-seeking behavior in the NAc shell, but not core. Furthermore, neither systemic nor accumbal

mGluR5 or presynaptic CB1R blockade led to a further decrease in D1miRmGluR5 mutants (Figure 1, S2,

and S3). This suggests that eCB-LTD in D2-MSNs plays no or only a minor role in the processing of

reward-seeking responses, which is also in line with previous studies (Calipari et al., 2016; Hikida et al.,

2010; Lobo and Nestler, 2011; Ma et al., 2018; Soares-Cunha et al., 2016).

In conclusion, we show that mGluR5 interacts with the eCB system to induce synaptic changes in D1 neu-

rons in the NAc and that the resulting eCB-LTD mediates cue-induced reward-seeking responses. We pro-

pose that such molecular and synaptic events contribute to the common neural circuit adaptations that un-

derlie the persistence of natural and drug reward memories. Cues paired with drugs of abuse can drive

behavioral and physiological responses responsible for craving and relapse even after long periods of

abstinence (Shaham et al., 2003; Sanchis-Segura and Spanagel, 2006), and similarly, cues conditioned to

non-drug rewards such as highly palatable liquids and food, sex, and money induce similar network activity

and contribute to overeating, obesity, gambling, and other forms of addictive behavior (Noori et al., 2016).

Proposing that natural and drug rewards share the same molecular and physiological correlate for cue-

induced reward-seeking responses, medications targeting mGluR5-dependent eCB-LTD, such as com-

pounds that modulate endogenous 2-AG levels, may be useful in treating a variety of addictive behaviors.

Limitations of the Study

The present study has two limitations. First, with our mouse model we could not well distinguish about the

contribution of D1- and D2-MSNs in the processing of reward-seeking responses. Although our data

strongly support the conclusion that eCB-LTD in D2-MSNs plays no important role in processing of

reward-seeking responses, the use of D2miRmGluR5 mutants would have provided full evidence for this

conclusion. Clearly, the generation of such a selective transgenic mouse model and its full behavioral, mo-

lecular, neuroanatomical, and physiological characterization as presented here for D1miRmGluR5 mutants

would have been a major contribution on its own. Secondly, we did not perform slice experiments to test if

saccharin exposure can abolish eCB-LTD. This research question was indeed of interest in regard to our

previous publications where we showed that eCB-mediated synaptic plasticity in the NAc is eliminated

following exposure to drugs of abuse (Mato et al., 2004; Fourgeaud et al., 2004; Zlebnik and Cheer,

2016). However, in the context of this study, this additional information would not have impact on our con-

clusions: the present work tested the hypothesis that eCB-LTD in D1 MSN mediates reward-seeking

behavior and not that natural rewards would abolish this form of plasticity.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100951.
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Supplemental Figure 1 

 

Figure S1. Active and inactive lever pressing for operant self-administration during 

training and extinction phases, related to Figure 1. 

(A) Operant lever press responses across 15 daily sessions of contextual cues (S
+
/CS

+
) 

pairings with a 10% ethanol solution are stable and do not significantly differ between wild-

type and D1
miR

mGluR5 mice (n=12 per genotype). (B) Extinction is achieved after 15 

sessions and does not differ between the two genotypes. (C) Inactive lever pressing during the 

S
+
/CS

+
 conditions (during the last 3 days of the training phase), the extinction phase and 

during the reinstatement test are similar in both genotypes (D) Operant lever responses for the 

natural reward saccharin did not differ in wild-type (n=14) and D1
miR

mGluR5 mice (n=15). 

(E) Extinction is achieved after 21 sessions and does not differ between the two genotypes. 

(F) Inactive lever pressing during the S
+
/CS

+
 conditions (during the last 3 days of the training 

phase), the extinction phase and during the reinstatement test are similar in both genotypes. 

Data represent mean + SEM. 
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Supplemental Figure 2 

 

 

Figure S2. Effect of systemic administration of the CB1 antagonist AM251 on cue-

induced reinstatement of saccharin-seeking behavior, related to Figure 1.  

Systemic administration of AM251 reduced the reinstatement in wild-type mice, but not in 

D1
miR

mGluR5 mice. Data represent mean + SEM. Two-way ANOVA, (*) P <0.001 vs 

vehicle treatment.  

 

 



   

 

 

3 

Supplemental Figure 3 

 

Figure S3. Effect of accumbal inhibition of CB1 on cue-induced reinstatement of 

saccharin seeking, related to Figure 1. Effect of accumbal inhibition of CB1 (1µg/0.5µl 

AM251, intra-accumbal) on cue-induced reinstatement of saccharin seeking in wild-type 

(n=9) mice. Data represent mean + SEM. Two-way ANOVA, (*) P <0.001 vs vehicle 

treatment. 
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Supplemental Figure 4 

 

Figure S4. Locomotor activity, anxiety and short-term memory are intact in 

D1
miR

mGluR5 mice, related to Figure 1.  

(A) Spontaneous home cage locomotor activity measured by the e-motion system is 

indistinguishable between wild-type (n=7) and D1miRmGluR5 mice (n=9) (Two-way 

ANOVA, genotype effect (F (1,84)=2.8, P <0.1). Both genotypes display typical diurnal 

rhythmicity with higher activity levels during the night phase compared with the resting, light 

phase of the day. Two-way ANOVA indicates a phase effect (F (1,84)=430.5, p<0.0001), and 

all day points are significantly different from all night points (Newman-Keuls post-hoc test, 

P<0.05, not indicated). (B) D1
miR

mGluR5 mice show a faster habituation to novelty in the 

activity boxes. During the first 30 min exposure (Exposure 1), both genotypes display 

decreased locomotor activation in the last 5 min compared to the first 5 min, indicating 

habituation to novelty (Two-way ANOVA,  time effect: F (9,126)=13,  P <0.0001). However, 

this effect is more pronounced in D1
miR

mGluR5 mice (genotype effect: F (1,14)=10.4, P <0.01, 

Newman-Keuls post-hoc test indicates P <0.005 in wild-types and P <0.0001 in 

D1
miR

mGluR5 mice comparing the first and the last 5 min of the exposure). After repeated 

exposures (Exposure 5) habituation processes are not different anymore between genotypes 

(Two-way ANOVA, genotype effect: F (1,14)=1.6, P =0.2;  time effect: F (9,126)=37.3, P 

<0.0001;  Newman-Keuls post-hoc test P <0.0001 for both genotypes comparing the first and 

the last 5 min of the exposure). (C-H) Anxiety-related behavior is not different between both 

genotypes. (C, D) Elevated plus-maze test. The time spent (C) and number of visits to the 

open arms (D) of the maze is almost identical in both genotypes (t (51)=0.5, P=0.6). (E,F) 

similarly, in light-dark box, time spent in the light area (E) or the latency to enter the light 
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zone (F) is not different between wild-type and D1
miR

mGluR5 mice (t (53) = -0.1; P=0.9 and  

t(53) = 0.7; P =0.5, respectively). (G, H) Novelty-induced grooming duration (G) and frequency 

(H) is indistinguishable between wild-type and D1miRmGluR5 mice (t (15) = 0.1; P =0.9 and t 

(15) = 0.2;  P =0.8, respectively). (I, J) Evaluation of the short-term memory in the Y-maze test 

shows an intact performance in D1
miR

mGluR5 mice, as indicated by the decreased time (I) 

and number of visits (J) displayed to the new arm 30 min after the first exposure (inter-trial-

interval 30) (Two-way ANOVA, inter-trial interval effect: F (1,30) = 56; P <0.0001 and  F (1,30) 

= 82.6; P <0.0001 for I&J, respectively). Data represent mean + SEM. Two-way ANOVA, * 

P <0.005 and ** P <0.0001 compared with first 5 minutes; + P <0.005 compared with 2 min 

inter-trial interval. 
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Supplemental Figure 5 

 

Figure S5. Tonic CB1R activation is minimal in both wild-type and D1
miR

mGluR5 mice, 

related to Figure 3.  

The cannabinoid inverse agonist SR141716A had no effect on baseline transmission in wild-

type (blue) or D1
miR

mGluR5 (red) mice. Average time course of mean EPSCs is represented 

as percentage of the basal value. All data represent mean ± SEM. Two-way ANOVA, *P < 

0.05 vs. D1
miR

mGluR5 mice. 
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Supplemental Figure 6 

 

Figure S6. Basal eCB and congeners concentrations in the NAc of wild-type and 

D1
miR

mGluR5 mice, related to Figure 3. 

1-arachidonoyl glycerol (1-AG, (A)), arachidonic acid (AA, (B)), oleoylethanolamide (OEA, 

(C)) and palmitoylethanolamide (PEA, (D)) levels in NAc of wild-type (n=10) and 

D1
miR

mGluR5 mice (n=10). Under basal, non-stimulated conditions, eCB and congeners 

levels are similar in both genotypes (Student’s t-test, 1-AG:  t (18)=-0.1, P =0.9;  AA: t (18)= -

0.3, P =0.7; OEA: t (18)=-1.7, P =0.1; PEA: t (18)= -1.8, P =0.1). Data represent picomoles or 

nanomoles/gram wet tissue ± SEM. 
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Supplemental Figure 7 

 

Figure S7. Effect of JZL administration on saccharin seeking behavior in wild-type 

mice, related to Figure 4. 

In wild type mice (n=14), administration of JZL (16 mg/kg, i.p.) attenuated cue-induced 

reinstatement of saccharin-seeking behavior (t (13)=9.2, P<0.0001). All data represent mean + 

SEM. Student’s t-test, *P < 0.001 vs. vehicle treatment.  
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Transparent Methods  

Procedures for this study complied with the regulations covering animal experimentation 

within the European Union (European Communities Council Directive 86/609/EEC) and 

Germany (Deutsches Tierschutzgesetz) and the experiment was approved by the German 

animal welfare authorities (Regierungspräsidium Karlsruhe).  

 

Animals 

D1
miR

mGluR5 and wild-type male mice (6-8 weeks at the beginning of the experiments) were 

generated, genotyped and bred at the Central Institute of Mental Health in Mannheim. Short 

hairpin RNAs were designed using the sFold (sTarMir) and BLOCK-IT RNAi Designer 

(Invitrogen) software packages and tested in cell culture for knock-down (KD) efficiency of 

mGluR5 mRNA. BLOCK-iT Pol II miR RNAi Expression vector kit with GW/EmGFP-miR 

vector (Invitrogen) was used to insert synthetic oligos to artificial miRNA context. The 

construct was recombined into a bacterial artificial chromosome (BAC; RP24–179E13; 

Children's Hospital Oakland Research Institute, Oakland, CA) harboring the mouse D1R 

gene. The BAC was purified, the vector sequences were removed, and the transgene was 

injected into the pronuclei of fertilized oocytes from C57BL/6N mice. Experimental animals 

were generated by backcrossing of D1
miR

mGluR5 transgenic mice to C57BL/6N line. 

Transgenic animals were genotyped using the following primers: 

ACGTAAACGGCCACAAGTTC, AAGTCGTGCTGCTTCATGTG (Novak et al., 2010). All 

animals were singly housed in standard hanging cages at 21 ± 1°C and 50 ± 5% relative 

humidity on a 12 h light/dark cycle, with lights on at 7:00 A.M. Animals were provided with 

standard rodent food and tap water ad libitum. Animals were handled on a daily basis before 

starting the experiments. Experiments were conducted in accordance with European Union 

guidelines on the care and use of laboratory animals.  
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Behavioral experiments 

D1
miR

mGluR5 and wild-type mice were tested for basic phenotype, cue-induced reinstatement 

of ethanol, saccharin or sucrose operant self-administration, and intracranial self-stimulation 

(ICSS). All experiments were performed during the active, dark phase of the day, between 

9:00 and 14:00 h. 

Basic Phenotype. 

Characterization of locomotor, anxiety and short-term memory. The tests performed were 

home cage activity, habituation to the activity box, elevated plus maze paradigm, light-dark 

box, novelty-induced grooming and the free-choice exploration paradigm in Y-maze. All tests 

were performed by trained observers blind for genotypes. Devices used for all behavioral 

studies were carefully cleaned with a diluted acetic acid solution between animals to prevent 

olfactory cues.  

Home cage activity. Locomotor activity in the home cage was monitored by connecting an 

infrared sensor (Mouse-E-Motion; Infra-E-Motion GmbH, Henstedt-Ulzburg, Germany). A 

Mouse-E-Motion device was placed above each cage (30 cm from the bottom), so that the 

mouse could be detected at any position inside the cage. The device was sampling every 4 s 

whether the mouse moved or not. The sensor could detect body movements of the mouse of 

≥1.5 cm from one sample point to the next. Monitoring of locomotor activity started before 

the beginning of the experiments and lasted for 4–5 days, and data were collected every 4 h to 

measure the circadian pattern of motor activation.  

Habituation to the activity box. This test was used to assess animal exploratory activity and 

reactivity to novel environment and to evaluate the effects of habituation mechanisms. 

Animals were placed in activity chambers in which locomotor activity was measured every 

min for a period of 30 min under novelty and familiarity (4 consecutive more days) 

conditions. Clear Plexiglas boxes of 40 cm in diameter and 40 cm in height were used, and the 
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locomotor activity was measured with a TruScan activity monitoring system (Coulbourn 

Instruments, Allentown, PA, USA).   

Elevated plus maze. The plus maze consisted of 2 open arms and 2 enclosed arms extending 

from a central platform. The maze was elevated 50 cm above and illuminated from the top at 

60 lux. Each mouse was placed at the intersection of the 4 arms of the maze and allowed to 

explore all 4 arms freely for 5 min, and the behavior was recorded and measured by the 

Noldus/EthoVision 3.1 monitoring system Wageningen, The Netherlands).  

Light-dark box. The light-dark box test consisted of black and white plexiglass (45×20×27 

cm) box. The dark compartment (15×27 cm) was cover and the light compartment (30×27 

cm) remained open, and was kept at a luminosity of 350 lux. A door was located in the wall 

between the two chambers allowing free access between the light and dark compartments. 

Each mouse was placed in the dark chamber and was allowed to explore the box for 5 

minutes, and the behavior was recorded and measured by the Noldus/EthoVision 3.1 

monitoring system (Wageningen, The Netherlands).  

Novelty-induced grooming. We selected novelty-induced grooming, as it represents a 

characteristic behavior associated with selective stimulation of D1 receptors. Mice were 

handled and placed in a glass observation box of 30x40x30 cm. and the time spent grooming 

and the number of oral stereotypies was video tracked over 10 min.  

Free-choice exploration paradigm in Y-maze. This test studies working and short-term 

memory based in a simple measurement of novelty recognition. The test is based on the 

rodent’s innate curiosity to explore novel areas, and it is not biased by incentives/reinforcers 

such as food, etc. This test was used to assess preference and/or habituation to novelty and 

spatial memory. The apparatus consisted of three arms of black plastic forming a "Y." Mice 

were placed into one of the arms of the maze (start arm) and allowed to explore only another 

arm of the maze for 5 min. Two min and 30 min after the first exploration interval, mice were 

returned to the start arm and allowed to explore freely all three arms of the Y-maze for 5 min. 
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The number of entries into and the time spent in each arm was recorded and measured by the 

Noldus/EthoVision 3.1 monitoring system (Wageningen, The Netherlands).  

Operant self-administration, extinction and cue-induced reinstatement of ethanol and 

saccharin seeking. 

Mice were trained and tested in eight operant chambers (TSE Systems, Bad Homburg, 

Germany), operated with operant behavior system (TSE Systems). Each chamber had two 

ultrasensitive levers (required force, ≤1 g) on opposite sides: one functioning as the actuve 

and one as the inactive lever. Next to each lever, a front panel containing the visual stimulus 

was installed above a drinking microreservoir. When the programmed ratio requirements were 

met on the active lever, 10 μl of the solution were delivered into a microreservoir, and the 

visual stimulus was presented via a light located on the front panel. Responses on the inactive 

lever were recorded but had no programmed consequences. A microcomputer controlled the 

delivery of fluids, presentation of auditory and visual stimuli, and recording of the behavioral 

data.  

Conditioning phase. Mice were trained to self-administer 10% ethanol (v/v), 0.2% saccharin 

(w/v) or 3% sucrose (w/v) in 30 min daily sessions on a fixed ratio 1 schedule of 

reinforcement, where each response resulted in delivery of 10 µl of fluid. A contextual 

stimulus predicting reward availability was presented during the self-administration sessions. 

The contextual stimulus consisted of a gray, smooth floor (S
+
). In addition, each lever press 

resulting in delivery of fluid was paired with the illumination of the chamber’s cue light for 5 

s (CS
+
). Concurrently with the presentation of these stimuli, a 5 s time-out period was in 

effect, during which responses were recorded but not reinforced. Criteria for the conditioning 

were met at stable baseline lever pressing for 3 consecutive days, with no significant 

differences in lever pressing. 

Extinction phase. After the last conditioning day, mice were subjected to 30-min extinction 

sessions. Responses at the lever activated the delivery mechanism but did not result in the 
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delivery of liquids or the presentation of the response-contingent cue (light). The criteria for 

extinction were established at 40% of the baseline lever responses for 3 consecutive days.  

Reinstatement testing. Reinstatement tests began the day after the last extinction session and 

lasted 30 min. In ethanol, saccharin or sucrose-trained mice, cue-induced reinstatement was 

tested under conditions identical to those during the conditioning phase, except that the fluid 

was not made available. 

Intracranial self-stimulation. 

Mice were anesthetized with 1.5-1.8% of isoflurane (CP-Pharma, Burgdorf, Germany), 

stereotaxically implanted with insulated monopolar stainless steel electrodes (28 mm 

diameter) (Plastics One, USA) to the right medial forebrain bundle in the lateral 

hypothalamus (coordinates from Bregma: anterior (AP) -1.2, lateral (ML) +1, ventral (DV) 

−5.4), and trained to respond for brain stimulation reward (BSR).  

During each testing session, mice responded during three consecutive series of 15 descending 

frequencies (.05 log10 steps). Maximum control rate (MCR), and total number of stimulations 

were calculated from the average of the second and third series. Stimulation seeking and 

extinction components were calculated from the total number of stimulations during the first 5 

highest frequencies and the remaining 10, respectively.  

 

Surgery and intra-NAc microinfusions.  

Mice were anesthetized with 1.5-1.8% of isoflurane (CP-Pharma, Burgdorf, Germany). 

Unilateral cannulae were implanted under stereotaxic guidance (David Kopf Instruments, 

Tujunga, USA) aimed at the nucleus accumbens core (from Bregma: anterior (AP) +1.65, 

lateral (ML) ±0.9, ventral (DV) −4.2). Stainless steel cannulae (-4.2 mm, 26 gauge) were 

used. Cannulae were secured with cement (Super-Bond C&B, Sun Medical, Moriyama, 

Japan), and a 33-gauge stainless steel stylets were inserted into the length of each guide 

cannula prevent blockade and contamination. Cannulae were implanted at the end of the self-
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administration training phase, and mice had 3-4 days of recovery. For microinfusions, mice 

were gently restrained, stylets were removed and injectors (33-gauge stainless steel tubing) 

were lowered 0.1mm beyond the tip of the guide cannula into the accumbens core and were 

attached via polyethylene tubing (PE20) to 10 μl Hamilton syringes. Infusions of 0.5 µl were 

delivered by a syringe pump (Harvard Apparatus, Holliston, USA) and were given over 2min 

(flow rate 0.25µl/min) to limit injection spread into neighboring brain areas, as well as to 

minimize diffusion up the injector track. To ensure complete diffusion, injectors were 

removed 1min after completion of the infusion. 

 

Drugs 

For the behavioral experiments, ethanol dilution (10% w/v) was made up with 95% ethyl 

alcohol and water. Sodium saccharin (Sigma Chemical Co., Germany) or sucrose were added 

to water to achieve 0.2% and 3% (w/v), respectively. Systemic, intraperitoneal treatments 

included AM251 (0.3 mg/kg), MTEP (20 mg/kg), JZL184 (16 mg/kg, Sigma Chemical Co., 

Germany) and CP55, 940 (20 µg/kg) suspended with 2–3 drops of Tween 80 in saline as 

vehicle and cocaine (20 mg/kg) dissolved in saline. AM251 (1µg/0.5µl), JZL (1.6 and 

3µg/0.5µl) were dissolved in water administered in the NAc core.  

Drugs were administered 40min (MTEP, AM251 and JZL184, i.p.), 24h (cocaine and CP55, 

940, i.p.) or 1h (AM251 and JZL184, intra-accumbal) before the reinstatement, self-

administration tests or in the homecage. For the operant tests, drug administrations were 

conducted every third day using a counterbalanced design.  

  

Statistical analyses 

Statistical analyses were performed by ANOVA with Newman-Keuls test for post-hoc 

comparisons, Mann Whitney U-test or Student’s t-test. Significance was set at P<0.05.  
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Electrophysiological Experiments 

 

Slice preparation 

Nucleus accumbens (NAc) slices were prepared as follows. Briefly, mice were anesthetized 

with isoflurane and decapitated. The brain was sliced (300 μm) in the coronal plane 

(Integraslice, Campden Instruments, Leicester, U.K.) and maintained in artificial 

cerebrospinal fluid (ACSF) containing 126 mM NaCl, 2.5 mM KCl, 2.4 mM MgCl2, 1.2 mM 

CaCl2, 18 mM NaHCO3, 1.2 mM NaH2PO4 and 11 mM glucose, equilibrated with 95% 

O2/5% CO2 at 4°C. Slices were then stored for 30 min at 32–35°C and at 22 ± 2 °C until 

recording in ACSF. 

 

Electrophysiology 

Whole-cell patch-clamp and extracellular field recordings were made from medium spiny 

neurons respectively, in coronal slices of mouse NAc (Deroche et al., 2020). For recording, 

slices were superfused (2ml/min) with ACSF. All experiments were done at 32–35 °C. The 

ACSF contained picrotoxin (100 μM) to block GABA-A receptors. To evoke synaptic 

currents, 150-200 μs stimuli were delivered at 0.1Hz through an ACSF-filled glass electrode 

placed at a distance > 150 µm in the dorsomedial direction (ventral striatum recordings). For 

extracellular field experiments, the recording pipette was filled with ACSF. The glutamatergic 

nature of the field excitatory postsynaptic potential (fEPSP) was confirmed at the end of each 

experiments using the ionotropic glutamate receptor antagonist 6, 7-dinitroquinoxaline-2,3-

dione (DNQX, 20 μM), that specifically blocked the synaptic component without altering the 

non-synaptic component (data not shown). LTD was induced by low frequency stimulation of 

10 minutes at 10 Hz. For whole-cell patch-clamp, pyramidal neurons in PFC layer V/VI and 

medium spiny neurons of NAc were visualized using an infrared microscope (BX-50WI or 

BX-51WI, Olympus). Experiments were made with electrodes containing 128mM potassium 
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gluconate (KGlu), 20mM NaCl, 1mM MgCl2, 1mM EGTA, 0.3mM CaCl2, 2mM Na
2+

-ATP, 

0.3mM Na
+
-GTP, 10mM glucose buffered with 10mM HEPES, pH 7.3, osmolarity 

290mOsm. Electrode resistance was 4–6MOhm. If access resistance (no compensation, 

<25MOhm) changed by >20%, the experiment was rejected. To perform the voltage-clamp 

experiments, evoked EPSCs were recorded at -70mV. 

 

Retrograde tracing 

Under general ketamine-xylazine anesthesia and stereotactic control, 80 nl of red or green 

fluorescent latex microspheres (Lumafluor, Naples, F) were pressure injected bilaterally in the 

ventral mesencephalon (bregma: -3.3mm, lateral: 0.6mm, ventral:4.8mm) or Ventral pallidum 

(bregma:0.15mm, lateral:1.8mm ventral:4.8mm). Animals were sacrificed 14-28 days after 

injections and brain slices prepared for electrophysiology.  

Retrogradely labeled direct and indirect pathway MSNs were visualized by infrared-

differential interference contrast (IR-DIC) and epifluorescence microscopy (Olympus BX-

51WI).  

 

Data acquisition and analysis 

The potential reference of the amplifier was adjusted to zero before breaking into the cell or 

entering the slice. Data were recorded on a MultiClamp 700B or Axopatch 200B (Axon 

Instruments), filtered at 2kHz, digitized (20kHz, DigiData 1440A or 1322A, Axon 

Instrument), collected using Clampex 10.2 and analyzed using Clampfit 10.2 (all from 

Molecular Device, Sunnyvale, USA). Analysis of both area and amplitude of fEPSP and 

EPSCs was performed (graphs depict amplitudes for patch clamp experiments and areas for 

field recordings). The magnitude of LTD was calculated 25-30 minutes after tetanic protocol 

as percentage of baseline responses. 
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The fitting of concentration response curves was calculated according to 

y={ymax2ymin/1+(x/EC50)n}+ymin (where ymax=response in the absence of agonist, 

ymin=response remaining in presence of maximal agonist concentration, x=concentration, 

EC50=concentration of agonist producing 50% of the maximal response and n=slope) with 

GraphPad Prism 5.0 (GraphPad Software Inc., La Jolla, CA). 

 

Drugs 

Drugs were added at the final concentration to the ACSF. Picrotoxin was from Sigma (St. 

Quentin Fallavier, France). DNQX was from the National Institute of Mental Health's 

Chemical Synthesis and Drug Supply Program (Rockville, MD, USA). LY379268, JZL184 

and CP55, 940 were from Tocris (Bristol, UK). 

 

Statistical analysis 

The value n corresponds to the number of animals. All values are given as mean ± SEM. and 

statistical significance was set at P <0.05. Statistical analysis (ANOVA or Mann Whitney U-

test), was performed with GraphPad Prism 5.0 (GraphPad Software Inc., La Jolla, CA).  

 

Immunohistochemistry for electron microscopy 

Preembedding immunocytochemical method for electron microscopy. Animals were deeply 

anesthetized by i.p. injection of a mixture of Nembutal (5mg/100g body weight; Abbott 

Laboratories Inc., IL, USA) and urethane (130mg/100g body weight; Sigma-Aldrich, St. 

Louis, MO, USA). They were transcardially perfused with PBS (0.1 M, pH 7.4) and then 

fixed with 250 ml of 4% formaldehyde, 0.1% glutaraldehyde and 0.2% saturated picric acid in 

PB (0.1M, pH 7.4). Perfusates were used at 4
o
C. Tissue blocks were extensively rinsed in 0.1 

M PBS (pH 7.4). Coronal brain vibrosections were cut at 50 µm and collected in 0.1 M PBS 

(pH 7.4) at RT. Sections containing the nucleus accumbens were preincubated in a blocking 
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solution of 10% bovine serum albumin (BSA), 0.1% sodium azide and 0.02% saponin 

prepared in Tris-HCl buffered saline (TBS, pH 7.4) for 30 minutes at RT. A preembedding 

silver-intensified immunogold method was used for the localization of CB1R, DAGL-α and 

MAGL proteins. The primary polyclonal antibodies used in this study were: polyclonal goat 

antibody to CB1R (2μg/ml; CB1R-Go-Af450-1; Frontier Science Co. Ltd; 1-777-12, Shinko-

nishi, Ishikari, Hokkaido, Japan), polyclonal goat antibody to DAGL-α (2μg/ml; DAGL-α-

Go-Af1080-1; Frontier Science Co. Ltd; 1-777-12, Shinko-nishi, Ishikari, Hokkaido, Japan) 

and polyclonal rabbit antibody to MAGL (1:100; Cayman Chemical Company, Michigan 

48108, USA). Accumbens sections were incubated with the primary antibodies in 10% 

BSA/TBS containing 0.1% sodium azide and 0.004% saponin on a shaker for 1 day at RT. 

After several washes in 1% BSA/TBS, tissue sections were incubated in the secondary 1.4 nm 

gold-labeled rabbit anti-goat IgG and goat anti-rabbit IgG (Fab' fragment, 1:100, Nanoprobes 

Inc., Yaphank, NY, USA), depending on the primary antibodies, in 1% BSA/TBS with 

0.004% saponin on a shaker for 4 hours at RT. Thereafter, the tissue was washed in 1% 

BSA/TBS overnight at 4ºC and postfixed in 1% glutaraldehyde in TBS for 10 minutes at RT. 

Following washes in double-distilled water, gold particles were silver-intensified with a HQ 

Silver kit (Nanoprobes Inc., Yaphank, NY, USA) for about 12 minutes in the dark and then 

washed in 0.1X PBS (pH 7.4). Stained sections were osmicated (1% OsO4 in 0.1X PBS, pH 

7.4, 20 minutes), dehydrated in graded alcohols to propylene oxide and plastic-embedded flat 

in Epon 812. 80nm ultrathin sections were collected on mesh nickel grids, stained with uranyl 

acetate and lead citrate, and examined in a Philips EM2008S electron microscope. Tissue 

preparations were photographed by using a digital camera coupled to the electron microscope. 

Figure compositions were scanned at 500 dots per inch (dpi). Labeling and minor adjustments 

in contrast and brightness were made using Adobe Photoshop (CS, Adobe Systems, San Jose, 

CA, USA).  
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Analysis of the proportion of immunolabeled profiles in nucleus accumbens. Sections with 

nucleus accumbens processed for the localization of CB1R, DAGL-α and MAGL with 

preembedding immunocytochemistry were used for semi quantitative analysis. Tissue 

showing good and reproducible silver-intensified gold particles were cut at 80 nm. Electron 

micrographs (10,000-25,000X) were taken from grids (132 µm side). To avoid false 

negatives, only ultrathin sections in the first 1.5 μm from the surface of the tissue block were 

examined. Positive labelling was considered if at least one immunoparticle was over 

postsynaptic or presynaptic membranes, within approximately 30 nm from the membranes, or 

within the cellular profile in case of MAGL. Percentages of immunopositive profiles were 

analyzed and displayed using a statistical software package (GraphPad Prism 4, GraphPad 

Software Inc, San Diego, USA). 

 

Measurement of endocannabinoid levels by LC-MS/MS analysis 

Standards for endocannabinoid measurements (anandamide (AEA), 2-arachidonoyl glycerol 

(2-AG), 1-arachidonoyl glycerol (1-AG), oleoylethanolamide (OEA), palmitoylethanolamide 

(PEA), arachidonic acid (AA), and their deuterated analogues AEA-d4, 2-AG-d5, 1-AG-d5, 

OEA-d2, PEA-d4, and AA-d8) were obtained from Cayman Chemicals (Ann Arbor, Michigan, 

USA). Water (H2O), acetonitrile (ACN), formic acid (FA), ethylacetate and hexane (all of 

Fluka LC-MS grade) were obtained from Sigma-Aldrich (Munich, Germany) and Carl Roth 

(Karlsruhe, Germany). All stock solutions, intermediate dilutions and calibration standards 

were made up with ACN at appropriate concentration levels. For the measurement of 

endocannabinoid levels, punches were kept frozen at -80
o
C. Samples were weighed in the 

extraction tubes, spiked with acetonitrile (ACN) containing the internal standards, 

homogenized in ice-cold 0,1 M formic acid using the TissueLyser II (Qiagen, Hilden, 

Germany) and extracted with ethylacetate/hexane (9:1, v/v). The tubes were vortexed for 30 

seconds, and centrifuged for 10 min at 10000 g and 4°C. The upper (organic) phase was 
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removed, evaporated to dryness under a gentle stream of nitrogen at 37°C and re-dissolved in 

ACN/H2O (1:1, v/v). The LC-MS/MS analysis was then performed on a LC-MS/MS system 

consisting of a 5500 QTrap triple-quadrupole linear ion trap mass spectrometer equipped with 

a Turbo V Ion Source (AB SCIEX, Darmstadt, Germany) with a “positive-negative 

switching” mode, an Agilent 1200 series LC system (degasser, pump, and thermostated 

column compartment; Agilent, Waldbronn, Germany), and a CTC HTC PAL autosampler 

(CTC Analytics AG, Zwingen, Switzerland). ECBs and related compounds were separated on 

a Phenomenex Luna 2.5 µm C18(2)-HST column combined with a SecurityGuard pre-column 

(Phenomenex, Aschaffenburg, Germany) with solvents A: 0.1% FA in 20:80 ACN/water 

(v/v), and B: 0.1% FA in ACN, using the following gradient: linear from 55-90% B (0-2 min), 

then held at 90% B (2-7.5 min), and re-equilibrated at 55% B (7.5-10 min). The column 

temperature was 25°C, the LC flow rate 0.3 ml/min, and the injection volume 20 µL. Positive 

and negative ions were analyzed simultaneously by combining two experiments in 'positive-

negative-switching' mode. The Turbo V Ion Source was operated with the electrospray 

('TurboIon') probe with nitrogen as curtain and nebulizer gas, and using the following 

settings: Temperature 550°C, curtain gas 40 psi, GS1 50 psi, GS2 50 psi, capillary voltage -

4500 V (negative) and +5500 V (positive).  The following precursor-to-product ion transitions 

were used for multiple-reaction monitoring (MRM): positive: AEA m/z 348.3 -> 62.1, AEA-

d4 m/z 352.3 -> 66.1, 2-AG/1-AG m/z 379.1 -> 287.2, 2-AG-d5/1-AG-d5 m/z 384.2 -> 287.2, 

OEA m/z 326.2 -> 62.1, OEA-d2 m/z 328.2 -> 62.1, PEA m/z 300.2 -> 62.1, PEA-d4 m/z 

304.2 -> 62.1; negative: AA m/z 303.1 -> 259.1, AA-d8 311.0 -> 267.0.  Data acquisition and 

analysis were performed using Analyst software (version 1.5.1; AB SCIEX). 
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