J. Wang and M. V. Sauer, In vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement, Therapeutics and Clinical Risk Management, vol.2, issue.4, pp.355-364, 2006.

M. Zhang, Y. Lu, Y. Chen, Y. Zhang, and B. Xiong, Insufficiency of melatonin in follicular fluid is a reversible cause for advanced maternal age-related aneuploidy in oocytes, Redox Biology, vol.28, p.101327, 2020.

Q. An, W. Peng, Y. Cheng, Z. Lu, C. Zhou et al., Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos, Journal of Cellular Physiology, vol.234, issue.10, pp.17370-17381, 2019.

L. Do, Y. Shibata, M. Taniguchi, M. Nii, T. V. Nguyen et al., Melatonin Supplementation DuringIn VitroMaturation and Development Supports the Development of Porcine Embryos, Reproduction in Domestic Animals, vol.50, issue.6, pp.1054-1058, 2015.

S. Soto-heras, M. Catalá, M. Roura, I. Menéndez-blanco, A. Piras et al., Effects of melatonin on oocyte developmental competence and the role of melatonin receptor 1 in juvenile goats, Reproduction in Domestic Animals, vol.54, issue.2, pp.381-390, 2018.

M. El-raey, M. Geshi, T. Somfai, M. Kaneda, M. Hirako et al., Evidence of melatonin synthesis in the cumulus oocyte complexes and its role in enhancing oocyte maturation in vitro in cattle, Molecular Reproduction and Development, vol.78, issue.4, pp.250-262, 2011.

T. Jing, S. Shile, Y. Sun, H. Li, W. P. Li et al., Melatonin levels in follicular fluid as markers for IVF outcomes and predicting ovarian reserve, Reproduction, vol.153, pp.443-51, 2017.

S. Lee, J. Jin, A. Taweechaipaisankul, G. A. Kim, C. Ahn et al., Melatonin influences the sonic hedgehog signaling pathway in porcine cumulus oocyte complexes, Journal of Pineal Research, vol.63, issue.3, p.e12424, 2017.

H. Igarashi, T. Takahashi, and S. Nagase, Oocyte aging underlies female reproductive aging: biological mechanisms and therapeutic strategies, Reproductive Medicine and Biology, vol.14, issue.4, pp.159-169, 2015.

P. S. Malhi, G. P. Adams, and J. Singh, Bovine Model for the Study of Reproductive Aging in Women: Follicular, Luteal, and Endocrine Characteristics1, Biology of Reproduction, vol.73, issue.1, pp.45-53, 2005.

P. S. Malhi, G. P. Adams, R. J. Mapletoft, and J. Singh, Oocyte developmental competence in a bovine model of reproductive aging, Reproduction, vol.134, issue.2, pp.233-239, 2007.

G. A. Thouas, A. O. Trounson, and G. M. Jones, Effect of Female Age on Mouse Oocyte Developmental Competence Following Mitochondrial Injury1, Biology of Reproduction, vol.73, issue.2, pp.366-373, 2005.

K. George and M. S. Kamath, Fertility and age, Journal of Human Reproductive Sciences, vol.3, issue.3, p.121, 2010.

P. J. Hansen, Realizing the promise of IVF in cattle?an overview, Theriogenology, vol.65, issue.1, pp.119-125, 2006.

L. M. Brayboy and G. M. Wessel, The double-edged sword of the mammalian oocyte -advantages, drawbacks and approaches for basic and clinical analysis at the single cell level, Mol Hum Reprod, vol.22, pp.200-207, 2015.

D. C. Chambers, A. M. Carew, S. W. Lukowski, and J. E. Powell, Transcriptomics and single?cell RNA?sequencing, Respirology, vol.24, issue.1, pp.29-36, 2018.

X. Liu, Y. Wang, Y. Liu, X. Yu, P. Wang et al., Single-cell transcriptome sequencing reveals that cell division cycle 5-like protein is essential for porcine oocyte maturation, Journal of Biological Chemistry, vol.293, issue.5, pp.1767-1780, 2017.

J. L. Chitwood, V. R. Burruel, S. A. Meyers, and P. J. Ross, 131 RNA-Seq TRANSCRIPTOME PROFILING OF INDIVIDUAL RHESUS MACAQUE OOCYTES AND PRE-IMPLANTATION EMBRYOS, Reproduction, Fertility and Development, vol.26, issue.1, p.179, 2014.

K. Chokeshaiusaha, T. Sananmuang, D. Puthier, and C. Nguyen, An innovative approach to predict immune-associated genes mutually targeted by cow and human milk microRNAs expression profiles, Veterinary World, vol.11, issue.9, pp.1203-1209, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01977762

M. Slawski, M. Daumer, and A. Boulesteix, CMA ? a comprehensive Bioconductor package for supervised classification with high dimensional data, BMC Bioinformatics, vol.9, issue.1, p.439, 2008.

R. Fernandes-de-mello and M. Antonelli-ponti, Introduction to Support Vector Machines, Machine Learning, pp.163-226, 2018.

S. Huang, C. Nianguang, P. Pacheco, P. Narandes, S. Wang et al., Applications of Support Vector Machine (SVM) Learning in Cancer Genomics, Cancer Genomics & Proteomics, vol.15, issue.1, pp.41-51, 2018.

H. Wang, S. Chang, W. Lin, C. Chen, S. Chiang et al., Machine Learning-Based Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing, Journal of Computational Biology, vol.25, issue.12, pp.1347-1360, 2018.

A. Kumar, D. Jeya-sundara-sharmila, and S. Singh, SVMRFE based approach for prediction of most discriminatory gene target for type II diabetes, Genomics Data, vol.12, pp.28-37, 2017.

M. Arabfard, M. Ohadi, V. Rezaei-tabar, A. Delbari, and K. Kavousi, Genome-wide prediction and prioritization of human aging genes by data fusion: a machine learning approach, BMC Genomics, vol.20, issue.1, 2019.

J. Zhang, X. Liu, L. Chen, S. Zhang, X. Zhang et al., Advanced maternal age alters expression of maternal effect genes that are essential for human oocyte quality, Aging, vol.12, issue.4, pp.3950-3961, 2020.

K. Chokeshaiusaha, D. Puthier, C. Nguyen, P. Sudjaidee, and T. Sananmuang, Factor Analysis for Bicluster Acquisition (FABIA) revealed vincristine-sensitive transcript pattern of canine transmissible venereal tumors, Heliyon, vol.5, issue.5, p.e01558, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02301294

M. D. Luecken and F. J. Theis, Current best practices in single?cell RNA?seq analysis: a tutorial, Molecular Systems Biology, vol.15, issue.6, 2019.

M. Barron and J. Li, Identifying and removing the cell-cycle effect from single-cell RNA-Sequencing data, Scientific Reports, vol.6, issue.1, 2016.

M. Shafer, Cross-Species Analysis of Single-Cell Transcriptomic Data, Frontiers in Cell and Developmental Biology, vol.7, 2019.

L. Haghverdi, A. T. Lun, M. D. Morgan, and J. C. Marioni, Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors, Nature Biotechnology, vol.36, issue.5, pp.421-427, 2018.

G. Finak, A. Mcdavid, M. Yajima, J. Deng, V. Gersuk et al., MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data, Genome Biology, vol.16, issue.1, 2015.

Z. Gu, R. Eils, and M. Schlesner, Complex heatmaps reveal patterns and correlations in multidimensional genomic data, Bioinformatics, vol.32, issue.18, pp.2847-2849, 2016.

A. Malamitsi-puchner, A. Sarandakou, S. G. Baka, J. Tziotis, D. Rizos et al., Concentrations of angiogenic factors in follicular fluid and oocyte-cumulus complex culture medium from women undergoing in vitro fertilization: association with oocyte maturity and fertilization, Fertility and Sterility, vol.76, issue.1, pp.98-101, 2001.

D. Manau, J. Balasch, W. Jime?nez, F. Fa?bregues, S. Civico et al., Follicular fluid concentrations of adrenomedullin, vascular endothelial growth factor and nitric oxide in IVF cycles: relationship to ovarian response, Human Reproduction, vol.15, issue.6, pp.1295-1299, 2000.

H. Asard, R. Barbaro, P. Trost, and A. Bérczi, Cytochromes b561: Ascorbate-Mediated Trans-Membrane Electron Transport, Antioxidants & Redox Signaling, vol.19, issue.9, pp.1026-1035, 2013.

W. Cao, Endonuclease V: an unusual enzyme for repair of DNA deamination, Cellular and Molecular Life Sciences, vol.70, issue.17, pp.3145-3156, 2012.

S. Lee, J. Jin, A. Taweechaipaisankul, G. A. Kim, C. Ahn et al., Sonic hedgehog signaling mediates resveratrol to improve maturation of pig oocytes in vitro and subsequent preimplantation embryo development, Journal of Cellular Physiology, vol.233, issue.6, pp.5023-5033, 2018.

K. R. Steffensen, K. Robertson, J. Gustafsson, and C. Y. Andersen, Reduced fertility and inability of oocytes to resume meiosis in mice deficient of the Lxr genes, Molecular and Cellular Endocrinology, vol.256, issue.1-2, pp.9-16, 2006.

L. Sagrillo-fagundes, J. Bienvenue-pariseault, and C. Vaillancourt, Melatonin: The smart molecule that differentially modulates autophagy in tumor and normal placental cells, PLOS ONE, vol.14, issue.1, p.e0202458, 2019.
URL : https://hal.archives-ouvertes.fr/pasteur-02136188

F. Lin, W. Zhang, H. Li, X. Tian, J. Zhang et al., Role of autophagy in modulating post-maturation aging of mouse oocytes, Cell Death & Disease, vol.9, issue.3, 2018.

X. Shen, Y. Jin, S. Liang, J. Kwon, J. Zhu et al., Autophagy is required for proper meiosis of porcine oocytes maturing in vitro, Scientific Reports, vol.8, issue.1, 2018.

A. Yonezawa and K. Inui, Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics, British Journal of Pharmacology, vol.164, issue.7, pp.1817-1825, 2011.

C. Wang, Y. Wang, M. Hu, Z. Chai, Q. Wu et al., Synaptotagmin?11 inhibits clathrin?mediated and bulk endocytosis, EMBO reports, vol.17, issue.1, pp.47-63, 2015.

N. S. Umapathy, J. P. Gnana-prakasam, P. M. Martin, B. Mysona, Y. Dun et al., Cloning and Functional Characterization of the Proton-Coupled Electrogenic Folate Transporter and Analysis of Its Expression in Retinal Cell Types, Investigative Opthalmology & Visual Science, vol.48, issue.11, p.5299, 2007.

M. Meredith, A. H. Macneil, J. M. Trasler, and J. M. Baltz, Growing Mouse Oocytes Transiently Activate Folate Transport via Folate Receptors As They Approach Full Size1, Biology of Reproduction, vol.94, issue.6, 2016.

J. Van-blerkom, Mitochondrial function in the human oocyte and embryo and their role in developmental competence, Mitochondrion, vol.11, issue.5, pp.797-813, 2011.