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�  �  �  �  �  �  �  �  

The human brain is a dynamic modular  network  that can be decomposed into  a set of modules, and its activity  changes continually  over time. At rest, several brain 

networks, known as Resting-State Networks (RSNs), emerge and cross-communicate even at sub-second temporal scale. Here, we seek to decipher the fast reshaping 

in spontaneous brain modularity  and its relationships with  RSNs. We use Electro/Magneto-Encephalography (EEG/MEG) to track the dynamics of modular  brain 

networks, in three independent datasets ( N = 568) of healthy subjects at rest. We show the presence of strikingly  consistent RSNs, and a splitting  phenomenon of some 

of these networks, especially the default  mode network,  visual, temporal and dorsal attentional  networks. We also demonstrate that between-subjects variability  in 

mental imagery is associated with  the temporal characteristics of speci�c  modules, particularly  the visual network.  Taken together, our �ndings  show that large-scale 
electrophysiological  networks have modularity-dependent  dynamic �ngerprints  at rest. 
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. Introduction  

Spontaneous brain  activity  changes continuously,  over multiple
emporal  scales ranging from sub-second to years. Those 	uctuations
nvolve  a set of networks known as resting-state networks (RSNs)
 Damoiseaux et al., 2012 ; Raichle et al., 2001 ) . To decipher the
ltra-fast  dynamic recon�guration  of these RSNs and their  cross-
ommunications, several functional  studies have been conducted. Some
tudies have described the dynamic topological  changes of functional
etworks using graph theoretical  analysis ( de Pasquale et al., 2015 ;
iao et al., 2018 ; Kabbara et al., 2017 ). Others focused on detecting
brain network  states• 	uctuating  over time ( E.A. Allen et al., 2014 ;
aker et al., 2014 ). The main idea is that  spontaneous brain  activity  can
e explained by a set of spatiotemporal network  patterns. Most studies
ave been performed in combination  with  dimensionality  reduction  al-
orithms (such as K-means clustering ( E.A. Allen et al., 2014 ), principal
omponent analysis ( Preti and Van De Ville,  2016 ; Leonardi et al., 2013 ),
rthogonal  connectivity  factorization  ( Hyvärinen  et al., 2016 )),  or
odel-based approaches, such as Hidden Markov Models ( Baker et al.,
014 ). Features derived from these fast-dynamic analyses were also
hown as potential  neuromarkers for  some brain  diseases ( Filippi  et al.,
019 ; A Kabbara et al., 2018 ; Liu et al., 2019 ) and behavioral  charac-

eristics ( Kenett et al., 2020 ; Tompson et al., 2018 ). 
Emerging evidence shows that  the human brain  is a modular  network

artitioned  into  •modules•) also called communities or clusters) denot-
ng brain  regions that  are highly  intra-connected and weakly connected
ith  others ( Bassett and Sporns, 2017 ). The modular  organization  of

he human brain  network  and its dynamics were shown to be associ-
ted with  aging ( Meunier et al., 2009 ) and several task-related brain
�  Corresponding author.  
E-mail address: mahmoud.hassan@univ-rennes1.fr (M. Hassan). 
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unctions such as learning ( Bassett et al., 2011 ) and cognitive  e
orts
 Kitzbichler  et al., 2011 ). While several resting-state functional  mag-
etic resonance imaging (fMRI)  studies have been conducted to investi-
ate the time-dependence of brain  modular  networks ( E.A. Allen et al.,
014 ; Jones et al., 2012 ; Zalesky et al., 2014 ), the evidence for  rapid
eshaping in spontaneous modular  brain  networks and their  relation-
hips with  RSNs at timescales associated with  fast cognition  is very
imited.  To precisely track network  dynamics, we need a modality
hat  can match the rapid  timescales of the underlying  brain  functions.
n this context, electro/magneto-encephalography (EEG/MEG) can be
sed to describe those fast (sub-millisecond)  modularity-dependent

uctuations.  

Here, we hypothesized that  the dynamic modular  reorganization  of
he human brain  at rest is characterized by a continuous process of sep-
ration and merging within  and across di
erent  RSNs over time.  To de-

ect •modular  brain  states Ž, we use a recently developed framework  that
llows to precisely quantify  the 	uctuations  of the time-varying  •states
A. Kabbara et al., 2019 ). Unlike  other clustering algorithms,  this frame-
ork  detects the fast-transient changes in the brain  modular  structure
nd was shown to outperform  other existing clustering algorithms in

erms of spatiotemporal precision. We tested our hypothesis on three
ndependent EEG/MEG datasets ( N = 568) for  healthy subjects at rest,
ource-reconstructed to 68 regions across the entire cortex. Dynamic
rain  networks were reconstructed using the EEG/MEG source connec-

ivity  technique using both power- and phase- couplings ( Hassan and
endling, 2018 ), combined with  a sliding  window  approach and an al-

orithm  to detect modular  states ( Fig. 1 ). Notably,  our results revealed
he presence of consistent network  patterns for  most participants  and
 splitting  phenomenon of some of these networks, such as the default
cember 2020 
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Fig.  1. Study pipeline.  (A) Three datasets were analyzed: 1) Resting-state EEG data provided from the healthy brain network  biobank including  444 subjects; 2) 

Resting-state EEG data acquired from 56 healthy subjects; and 3) Resting-state MEG data provided from the human connectome project including  61 subjects. (B) The 

template MRI was segmented into  regions of interest (ROIs) by the means of an anatomical atlas ( Desikan et al., 2006 ). Then, the regional time series of each subject 
were reconstructed using the weighted minimum  norm estimate inverse solution  (WMNE) for Datasets 1 and 2, and beamforming for Dataset 3. (C) Using a sliding  

window  technique, the dynamic brain networks were computed. (D) The �rst  step in the modularity-based algorithm  was to parcellate each temporal network  into  

communities. Then, the similarity  between the temporal modular  structures was assessed. (E) The similarity  matrix  was segmented into  di
erent  communities where 

each one represents a modular  state of speci�c  spatial topology combining  di
erent  time windows.  (F) Following  this, all  the modules derived from the di
erent  

MSs were extracted for each subject. Among them, we only  retained those that presented strong association with  RSNs (more than 80% of nodal overlap). Please see 
Supplementary materials for  the de�nition  of RSNs. (G) The mean dwell  time and fractional  occupancies were calculated for the main modules related to RSNs. (For 
interpretation  of the references to color in this �gure  legend, the reader is referred to the web version of this article.)  

m  

t  

p  

i

2

 

R  

b  

f  

f  

n  

j  

W  

t  

c  

M  

a  

M  

f  

i  

s  

n  

o  

b  

a  

M  

t  

i  

t  

w  

F

2

 

a  

t  

t  
ode, visual, temporal  and dorsal attentional  networks. We speculate
hat  tracking  the fast modular  architecture  of ongoing neuronal activity
rovides new insights into  the dynamics of the large-scale electrophys-

ological  network  organization  of the human brain.  

. Results  

We performed our analysis on three independent datasets: 1)
esting-state EEG data provided from the Healthy brain  network
iobank comprising 444 subjects; 2) Resting-state EEG data acquired

rom 56 healthy subjects; and 3) Resting state MEG data provided
rom the Human Connectome Project including  61 subjects. The dy-
amic functional  connectivity  networks were assessed for  each sub-

ect using the EEG/MEG source connectivity  method ( Hassan and
endling, 2018 ). For EEG datasets (datasets 1 and 2), we used

he weighted Minimum  Norm Estimate (wMNE) followed  by phase-
ouplings as recommended by previous EEG studies ( Hassan et al., 2016 ;
. 2014 ). For the MEG dataset (dataset 3), we used the beamforming
pproach followed  by envelope-couplings, as recommended in previous
EG studies ( O•Neill et al., 2017a ; Tijms et al., 2013 ), with  correction
2 
or spatial leakage to reduce volume conduction e
ects.  Then, a slid-
ng window  technique was applied forming  a continuous series of snap-
hots characterizing the evolution  of each individual•s  functional  brain
etwork  (see Materials and Methods for  details about the construction
f EEG/MEG functional  networks).  Then, we applied the modularity-
ased algorithm  that  uses as an input  the tensor of dynamic networks
nd produce modular  states (MSs) 	uctuating  over time,  where each
S represents a unique modular  topology.  Brie	y,  the algorithm  de-

ects the modular  structures sharing the same topology by quantify-
ng the similarity  between all  the computed temporal  partitions.  We
hen identi�ed  the individual  modules presenting a strong association
ith  one or several RSNs. The full  pipeline  of the study is illustrated  in
ig. 1 . 

.1. 16 states were identi�ed  for the �rst  database 

Fig. 2 illustrates  the 16 modules derived from the 444 subjects in the
lpha band. It  also reports the percentage of subjects exhibiting  each of

he modules. One can realize that  three derived modules are related to
he DMN: POST-DMN including  the posterior components of the DMN
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Fig.  2. Results of Dataset 1 obtained in the alpha band: Derived modules associated to RSNs and their  corresponding percentage of subjects. 
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ystem (posterior  cingulate, parahippocampal, precuneus, and inferior
arietal  lobule regions), ANT-DMN including  the anterior  components
f the DMN (prefrontal  regions), and DMN which  represents the large
odule integrating  both posterior and anterior  parts into  the same mod-
le. Also, three temporal  modular  con�gurations  are depicted: �  -TEMP
nd R-TEMP representing the left  and right  superior and inferior  tem-
oral regions, respectively; and TEMP that  combines both left  and right
emporal  modules. In addition,  two modules related to the visual net-
ork  were observed: the ventral-VIS, including  the ventral  regions of the
isual network;  and VIS integrating  ventral  and dorsal visual regions.
verall,  the modules ranked from the highest to the lowest percentage
f subjects are: DMN (present in 96% of subjects), POST-DMN (present

n 88% of subjects), VIS- visual network  (present in 86% of subjects),
NT-DMN (present in 86% of subjects), SMN- somatomotor network

present in 83% of subjects), DAN- dorsal attentional  network  (present
n 80% of subjects), �  -TEMP (present in 76% of subjects), TEMP (present
n 63% of subjects), SAN-salience network  (present in 63% of subjects),
UD + VIS- (a module that  combines both auditory  and visual networks,
resent in 61% of subjects), DMN + FPN … (a module that  combines both
efault  mode and frontoparietal  networks, present in 58% of subjects),
AN + VIS- (a module that  combines DAN and VIS, present in 53% of
ubjects), R-TEMP (present in 45% of subjects), FPN (present in 43%
3 
f subjects), AUD + VIS + DAN- (a module combining  AUD, VIS and DAN
etworks; present in 35% of subjects) and the ventral-VIS including  lin-
ual and fusiform  visual regions (present in 25% of subjects). Results
ere consistent among several threshold values of functional  connec-

ivity  matrices (see Table S1) and also within  the beta frequency band
see Table S4). 

.2. 12 states were identi�ed  for the second database 

According to the second dataset ( Fig. 3 ), 12 modules are extracted
rom the 57 subjects in the alpha frequency band. These modules are:
OST-DMN (present in 98% of subjects), VIS (present in 94% of sub-

ects), DAN (present in 91% of subjects), DMN (present in 84% of sub-
ects), L-TEMP (present in 82% of subjects), ANT-DMN (present in 81%
f subjects), SMN (present in 73% of subjects), AUD + VIS (present in
8% of subjects), DAN + VIS (present in 60% of subjects), TEMP (present

n 45% of subjects), DMN + CCN (a module that  combines DMN with  cog-
itive  control  components, present in 32% of subjects) and SAN (present

n 22% of subjects). Results were also consistent among several thresh-
ld values of functional  connectivity  matrices (see Table S2) and within

he beta frequency band (see Table S5). 
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Fig.  3. Results of Dataset 2 obtained in the alpha band: Derived modules associated to RSNs and their  corresponding percentage of subjects. 
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.3. 10 states were identi�ed  for the third database 

In Fig. 4 , we illustrate  the results obtained in the alpha band for  the
hird  dataset showing 10 modules derived from the 61 subjects: DMN
present in 100% of subjects), POST-DMN (present in 95% of subjects),
IS (present in 88% of subjects), L-TEMP (present in 78% of subjects),
AN (present in 72% of subjects), DAN (present in 79% of subjects),
MN (present in 62% of subjects), AUD + VIS (present in 49% of sub-

ects), DAN + VIS (present in 43% of subjects) and CCN (present in 18%
f subjects). Results were consistent among several threshold values of

unctional  connectivity  matrices (see Table S3) and within  the beta fre-
uency band (see Table S6). 

In summary, results obtained for  the three datasets revealed 	uc-
uating  modules concordant with  the well-known  RSNs. In particular,
he default  mode network  was the most consistent network  among sub-
ects in all  datasets (re	ected  by the highest percentage of presence over
ubjects). Results also showed that  some RSNs present various modular
opologies over time such as DMN, temporal  and the visual networks.
n addition,  modules that  combine several RSNs are observed over
ime, re	ecting  cross-network interactions,  as discussed below in more
etails. 

Fig. 5 presents a step-by-step example of results obtained for  a typical
ubject, where 8 MSs are derived. The similarities  between the 30 mod-
les extracted from all  MSs and RSNs templates are assessed ( Fig. 5. C).
mong the 30 modules, 18 modules have survived the 80% threshold on

he nodal overlap. These 18 modules are associated to 11 RSNs: DMN,
AN, SMN, VIS, LTEMP, DAN + VIS, AUD + VIS, POST-DMN, DMN + FPN,
PN, ANT-DMN. Visual inspection of the similarity  matrix  of Fig. 5. C

eveals that  DMN, SMN, VIS, ANT-DMN, AUD + VIS and LTEMP were
epresentative of two or more modules while  SAN, DAN + VIS and POST
MN were associated to a single module. Fig. 5. D presents the dynamic

uctuations  of the modules identi�ed,  where each module is color-coded
ccording to its corresponding RSN. 
4 
.4. Dwell time and the fractional occupancy 

In order to quantify  the temporal  characteristics of each module,
wo metrics were computed: dwell  time (DT), i.e. the average num-
er of consecutive windows spent in a module; and the fractional  oc-
upancy (FO), re	ecting  the proportion  of time spent in each mod-
le. As an example, the modules obtained in Fig. 5 ordered in terms
f FO are: DMN (FO = 56%), VIS (FO = 43%), DAN + VIS (FO = 43%),
MN (FO = 31%), SAN (FO = 19%), LTEMP (FO = 14%), AUD + VIS (FO =
0%), ANT-DMN(FO = 4%), POSTDMN (FO = 3%), DMN + FPN (FO = 3%),
PN (FO = 3%). In terms of DT, the modules are ordered as follow:  DMN

DT = 16%), VIS (DT = 10%), DAN + VIS (DT = 7%), SMN (DT = 7%), AUD
 VIS (DT = 7%), SAN (DT = 6%), POSTDMN(DT = 6%), LTEMP (DT = 6%),
PN (DT = 5%), DMN + FPN (DT = 5%). 

Fig. 6 reports the FOs and the mean DTs of the modules obtained for
ach dataset. The DMN (or one of its modular  con�gurations)  has clearly

he highest FO and DT over all  datasets. The VIS network  is shown as
igni�cant  in terms of FO in dataset2. According to the DT, SMN and
AN are depicted as signi�cantly  stable modules in dataset 1. 

In summary, results obtained from all  datasets points at the impor-
ance (and stability)  of DMN and its role as a functional  core network
uring  rest, as detailed in Discussion. 

.5. Correlation between the derived modules and mental imagery 

Finally,  we seek at understanding if  there is any correlation  between
he derived modules and the subject internal  thoughts experienced dur-
ng resting-state acquisition  measured by the Resting-State Question-
aire (rsQ). Only such data was available for  dataset 2. More specif-

cally,  the �ve  main indices derived from the rsQ (i.e. visual mental
magery, inner language, somatosensory awareness, inner musical ex-
erience, and mental manipulation  of numbers) were correlated with
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Fig.  4. Results of Dataset 3 obtained in the alpha band: Derived modules associated to RSNs and their  corresponding percentage of subjects. 
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m  
he temporal  features of each module. No signi�cant  correlations were
btained between any of the rsQ scores and the DT of extracted modules.

Fig. 7 reports signi�cant  positive correlations between visual mental
magery and the fractional  occupancy of VIS ( �  ���� �����	  
  ����
  ���  =
 . 01; 
  =  0 . 47 ), DAN ( �  ���� �����	  
  ����
  ���  =  0 . 006; 
  =  0 . 49 1) and
UD + VIS ( �  ���� �����	  
  ����
  ���  =  0 . 0003; 
  =  0 . 57 ) obtained in the al-
ha band. In the beta band, results show positive correlations between
isual imagery and the FO of AUD + VIS and DAN (see Figure S3).
esults were also consistent across other threshold values (see Figure
2). 

In summary, these results showed that  individual  variability  in the
isual imagery experienced during  acquisition  was positively  related to
he occupancy of speci�c  modules, mainly  VIS, DAN and VIS + AUD. 

. Discussion  

Here, we have shown how fast changes in the modular  architecture
f large-scale electrophysiological  networks shape spontaneous brain  ac-

ivity.  We used a recently developed algorithm  that  extracts repetitive
odular  brain  states alternating  over time.  As opposed to traditional  ap-
roaches, the distinctive  feature of the applied method resides in track-

ng modular  variations  of brain  networks. The framework  was applied
n three independent EEG/MEG datasets, and revealed that  RSNs expe-
ience continuous modular  changes re	ected  by a process of separation
nd merging within-  and between- the resting networks. 

In particular,  DMN switches dynamically  its modular  topology,  in
ine with  many previous studies suggesting that  the DMN can actu-
lly  be decomposed into  subcomponents, mainly  anterior  and posterior
 Andrews-Hanna et al., 2007 ; Moussa et al., 2011 ; Wens et al., 2019 ).
he process of association and dissociation within  DMN components
as also revealed by Allen et al. ( E.A. Allen et al., 2014 ), where brain
tates were described using K-means clustering. More importantly,  sev-
5 
ral studies have also showed that  the dynamic states transition  leads
o the inclusion  of some FPN regions in the DMN in some brain  states
 E.A. Allen et al., 2014 ; Liu et al., 2019 ), which  was also obtained in
ur study (results of dataset 1). Similarly,  the temporal  network  alter-
ates its recon�guration  between left,  right  and complete modules. This

nding  is in line with  previous results depicting  the left  part of the tem-
oral network  as an independent network  state ( Baker et al., 2014 ).
he dynamic modular  behavior of the resting brain  was also revealed
y the occurrence of modules integrating  di
erent  RSNs. For instance,

he DAN expands dynamically  its network  to include visual compo-
ents. The dynamic inclusion  of these networks re	ects  the presence
f a high correlation  between them, which  was supported in previous
tudies ( E.A. Allen et al., 2014 ; Liu et al., 2019 ). 

Our �ndings  agree with  previous studies suggesting that  dynamic
hanges in brain  networks are present during  spontaneous activity.  As
n example, ( Zalesky et al., 2014 ) showed that  some brain  regions
re transmodal (i.e., connected to di
erent  resting state networks over
ime).  These regions are highly  dynamic and change their  modular  af-
liation  over time.  A similar  observation was obtained in a previous
tudy where hubs dynamically  alternate its role between provincial  and
onnector ( Kabbara et al., 2017 ). This dynamic process of splitting  and
erging the di
erent  sub-systems during  time allows the brain  to bal-
nce segregated and integrated neural dynamics. To test whether there
ay be a sort of hierarchy  in terms of the consistency of brain  regions,
e also reported, for  each RSN, the regions included and their  contribu-

ions across subjects of all  datasets (in%).  Once a module was associated
o a speci�c  RSN, the overlapping nodes were identi�ed  to ultimately
ompute the rate of their  inclusion  across all  subjects and datasets. Fig-
re S1 shows that  despite the inter-subject variability,  some speci�c
rain  regions contribute  more consistently to a speci�c  RSN than others.

The DMN (in  its di
erent  con�gurations)  was the most consistent
odule obtained across subjects, since it  had the highest percentage of
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Fig.  5. Results of a typical  subject. (A) dynamic 	uctuation  of the 8 modular  states extracted for this speci�c  subject, (B) spatial representation of all  modules derived 

from each MS. (C) similarity  matrix  between all  MSs modules and RSN templates (for  simplicity,  only  RSNs showing an overlap greater than 80% with  one of the 

modules were mentioned),  �  marks the overlap values higher than 80%. (D) dynamic 	uctuations  of modules surviving  the 80% overlap threshold and associated to 

RSN templates. These modules are color-coded according to the corresponding RSNs (shown on the right  of Fig. 5. C). 

6 
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Fig.  6. Violin  plots showing fractional  occupancy and mean dwell  time of derived modules obtained for (A) Dataset1, (B) Dataset2 and (C) Dataset3. The horizontal  

dashed line that appears in each plot  denotes the mean plus two standard deviations. �  mark signi�cant  modules (average > mean value + 2 standard deviations).  

Fig.  7. Signi�cant  associations between visual mental imagery and fractional  occupancies of VIS, AUD and DAN modules in the alpha band (dataset 2). 

7 
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resence over subjects/datasets, with  the high fractional  occupancy val-
es. These �ndings  highlight  the key role of DMN in integrating  infor-
ation  in spontaneous brain  activity,  in accordance with  the presence
f a large proportion  of hubs associated to this network  ( de Pasquale
t al., 2015 ; Kabbara et al., 2017 ; van den Heuvel and Sporns, 2013 ).
urthermore, DMN con�gurations  had the greatest stability  over time
re	ected  by the highest mean dwell  duration).  Such �ndings  support
revious studies showing that  functional  connections within  the rich-
lub core (where most regions are a�liated  to the DMN) exhibit  the
reatest stability  over time.  In these studies, the high temporal  stabil-

ty  of DMN has been associated with  high dependency on the under-
ying  structural  brain  topology,  since high similarity  was obtained be-
ween resting-state functional  and structural  networks when the sam-
le duration  increases. In contrast to this, modules with  low  dwell
ime were transient and exhibited  greatest variability  during  time re-
ecting  the dynamic functional  coordination.  In our study, the de-
ived transient modules depend on each subject and database. Mostly,
hey belong to high-level  cognitive  networks, attentional  networks and
he sensory networks. In all  databases, these transient modules show-
ng signi�cant  lower  dwell  times are those integrating  multiple  RSNs
DAN + VIS, AUD + VISƒ).  One possible explanation is that  individuals
ynamically  engage in several mental thoughts during  resting periods,
hile  imagery and mind-wandering  remain the predominant  activities

 Delamillieure  et al., 2010 ; Doucet et al., 2012 ). Thus, the perspective of
ooking  at the brain  as a dynamic system where stable activity  is inter-
wined  by transient functional  variabilities  is supported by many studies
 Honey et al., 2007 ; Liu et al., 2019 ; Van De Ville  et al., 2010 ). 

In addition,  our study highlights  the signi�cant  presence of the vi-
ual network  showing a high occupancy rate during  time (results of
atasets 1 and 2). Such observation can be associated with  the domi-
ance of the visual imagery activity  exhibited  by most subjects during
esting state acquisition  ( Delamillieure  et al., 2010 ). More interestingly,
he individual  variability  in the visual imagery experienced during  ac-
uisition  was revealed to be positively  correlated to the fractional  oc-
upancy of VIS network  ( Fig. 7 ). Similar  correlations were reported by
revious studies ( Pipinis et al., 2017 ; Sto
ers  et al., 2015 ). In addition,

he signi�cant  relationships assessed between the mental imagery with
UD, DAN and VIS might  explain the cross-interactions observed be-

ween these networks forming  one large module over time (the presence
f DAN + VIS + AUD observed in the results of dataset 1, Fig. 2 ). 

Across the three datasets, our results showed 9 common RSNs: DMN,
OST-DMN, VIS, SMN, SAN, LTEMP, VIS + AUD, DAN + VIS. These strik-

ng consistent results have been obtained independently  from the tech-
ique used to record signals (EEG or MEG), preprocessing steps (auto-
atic in dataset 1 vs. manual in dataset 2 and 3), source reconstruc-

ion  (wMNE vs. Beamforming), adjacency matrices thresholding  value,
EG/MEG frequency bands (alpha vs. beta), atlas parcellation  (68 De-
ikan Killiany  vs 78 AAL) and functional  connectivity  measures (phase
s. envelope couplings), as well  as either with  or without  correcting the
ero-lag correlations. 

However, other modules arise from each dataset ( Figs. 2 , 3 , 4 ). The
nter-subject variability  was also revealed by the percentage of subjects
howing each derived module. Among the same dataset, these individ-
al di
erences  are thought  to be associated with  variability  in cognitive
nd behavioral  functions. This has been supported by di
erent  studies
howing that  the dynamic network  characteristics signi�cantly  correlate
ith  intelligence,  creativity  and executive function  ( Bassett et al., 2015 ;
enett et al., 2020 ; Tompson et al., 2018 ). Here, between-subjects varia-

ion  in the temporal  characteristics of speci�c  modules, mainly  VIS, AUD
nd DAN, was associated with  self-report rating  of mental visual imagery
s measured by the resting-state questionnaire. The dependence of ob-
erved brain  activity  on the inner thoughts and feeling experienced dur-
ng resting acquisition  was emphasized by multiple  studies ( Diaz et al.,
016 ; Pipinis et al., 2017 ; Sto
ers  et al., 2015 ). 

Despite the overall  consistency of our �ndings,  results over the
hree datasets were not perfectly  the same. For instance, the DMN
8 
ere present 96%, 98% and 100% over dataset 1, 2 and 3 respec-
ively  while  the VIS network  was present 86%, 94% and 88%. Also re-
ults showed the absence of the ANT-DMN in dataset 3, the absence of
PN in dataset 2 and 3 and the absence of CCN in dataset1. The dis-
repancy of results obtained from di
erent  datasets may be related to
ome di
erences  in the datasets such as the sample size, age of sub-

ects and the conditions of experiments (i.e. eyes closed/eyes opened).
n fact, while  RSNs have been successfully extracted in both eyes-opened
 E.A. Allen et al., 2014 ; Baker et al., 2014 ; de Pasquale et al., 2018 )
nd eyes-closed conditions ( Bernas et al., 2018 ; Kabbara et al., 2017 ;
wen et al., 2013 ), many studies have been conducted to investigate

he functional  connectivity  di
erences  in RSNs between eyes closed
nd eyes opened conditions ( Agcaoglu et al., 2019 ; Patriat et al., 2013 ;
an Dijk  et al., 2010 ; Yan et al., 2009 ). Our results on dataset 3 (ac-
uired in eyes opened condition)  showing the highest DMN occurrence
100%) among other datasets (acquired in eyes closed condition)  can
e related with  the studies revealing higher DMN functional  connec-

ivity  in the eyes opened as compared to the eyes closed condition
 Van Dijk  et al., 2010 ; Yan et al., 2009 ). An additional  cause for  the
iscrepancy of results between datasets is the use of di
erent  modali-
ies (MEG/EEG). More precisely, MEG/EEG di
erences  proved to arise
articularly  when investigating  transient resting-state functional  con-
ectivity  patterns ( Coquelet et al., 2020 ). 

The relevance of the alpha to beta frequency range (8…30 Hz) in
riving  spontaneous large-scale neuronal interactions was revealed by
ultiple  EEG/MEG studies ( Brookes et al., 2011 ; de Pasquale et al.,
015 ; Hipp et al., 2012 ; Kabbara et al., 2017 ; Liu et al., 2010 ).
ince correlation  patterns depend on the underlying  oscillation  fre-
uency ( Brookes et al., 2011 ; Hipp et al., 2012 ; Vidaurre  et al., 2018 ),
e have veri�ed  the reproducibility  of the obtained results in these

wo frequency bands. The main conclusions of the study remain in-
act (see Table S4, Table S5, Table S6, Figure S3): i)  distinct  mod-
les concordant with  the well-known  RSNs 	uctuate  during  time,  ii)

he default  mode network  is detected as the most consistent, dom-
nant  and stable module which  dynamically  alternates its modular
opology,  iii)  modules that  combine several RSNs are observed dur-
ng time,  re	ecting  cross-network interactions such as DAN-VIS, and
v)  signi�cant  positive correlation  was revealed between the frac-
ional  occurrences of some speci�c  modules and the mental imagery.
evertheless, slight  di
erences  were observed in the derived mod-
les and their  temporal  characteristics between the two frequency
ands. 

From a methodological  viewpoint,  we have adopted in each dataset
he pipeline  (from  data processing to networks construction)  used by
he previous studies dealing with  the same datasets. Therefore, for  EEG
atasets, we used the wMNE/PLV combination  to reconstruct dynamic
etworks, since it  is supported by several studies on resting EEG and
wo comparative studies ( Hassan et al., 2016 ; M. 2014 ). For the MEG
ataset, beamforming construction combined with  amplitude  correla-
ion  (and orthogonalization)  between band-limited  power envelops was
sed by multiple  studies using the MEG HCP data ( Brookes et al., 2012 ;
olclough et al., 2015 ). The suitable window  width  is a crucial  issue

n reconstructing dynamic functional  networks. On the one hand, short
indows do not contain su�cient  information  to accurately estimate
onnectivity.  On the other hand, large windows might  fail  to capture the
emporal  changes of brain  networks. Hence, the ideal is to choose the
hortest window  that  guarantees a su�cient  number of data points over
hich  connectivity  is computed. This depends on the frequency band of

nterest that  a
ects  the degree of freedom in time series. It  also depends
n the correlation  measure used. In EEG datasets, we adopted the recom-
endation of Lachaux et al. ( Lachaux et al., 2000 ) in selecting the small-
st appropriate window  length o
ering  6 number of •cycles• at the given
requency band. The reproducibility  of resting state results whilst  chang-
ng the size of the sliding  window  was validated in a previous study
 Kabbara et al., 2017 ). In MEG, we used the same correlation  method
ith  the corresponding sliding  window  size (0.5 s) used in previous stud-
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es dealing with  the same dataset ( Colclough et al., 2016a ; O•Neill et al.,
017b ). 

While EEG/MEG modalities present a key advantage for  tracking  dy-
amic brain  processes in the time frame in which  these processes occur
namely in the sub-second range), they are limited  in terms of spatial
overage. Basically, the main cause of this poor spatial resolution  is the
volume  conduction Ž problem which  distorts signals, inducing,  at each
calp position,  a mixture  e
ect  of the underlying  sources. Readers may
efer to ( Scho
elen  and Gross, 2009 ) for  more details about this issue.
lthough  the EEG/MEG source connectivity  method contributes to en-
ance the spatial resolution  by reducing the e
ects  of the volume con-
uction  problem, it  remains unable to completely remove source leak-
ge e
ects  ( Hassan and Wendling, 2018 ). More precisely, it  is di�cult

o pinpoint  the activity  originating  from distinct  but closely adjacent
ources. For this reason, in our study, we avoided the use of a high
umber of ROIs. Thus, we used 68 anatomical ROIs in EEG datasets,
nd 78 ROIs in MEG dataset as done in previous resting-state studies
howed that  these ROIs are su�cient  in extracting the global charac-
eristics of the brain  networks with  acceptable spatial resolution  while
inimizing  the problem of spurious connections between •very  close

ources Ž ( Kabbara et al., 2017 ). The Desikan_Killiany atlas (68 ROIs)
as also used to extract useful information  focusing on investigating  the

large-scale Ž networks derived from spontaneous activity  in the context
f personality traits  (Aya Kabbara et al., 2019 ), and brain  disorders (A.
abbara et al., 2018 ). In addition,  we have limited  our source space to

he cortex without  including  sub-cortical structures. 
In this study, we used a proportional  threshold (highest 15% of the

dge•s weights) to remove weak connections. The stability  of network-
ased features across proportional  thresholds was indeed supported by
 Garrison et al., 2015 ) in contrary  to absolute thresholds. In addition,
pplying  a proportional  threshold is important  to ensure equal density
etween networks derived from di
erent  time windows and subjects.
evertheless, and in order to ensure that  the obtained results are not
ensitive to the threshold value, we performed our analysis across three
roportional  thresholds: 5%, 15%, 30%. High agreement among the ob-
ained results was found, see Supplementary Materials (Table S1, Table
2, Table S3, Figure S2). 

To extract the fast transient modules, we have applied the
odularity-based algorithm  that  extracts the main modular  brain  states

uctuating  over time (A. Kabbara et al., 2019 ). Other strategies aiming
t identifying  the connectivity  states exist such as K-means clustering,

CA and PCA for  instance. However, in these frameworks, states are
denti�ed  without  considering the modular  organization  of networks.
nstead, the algorithm  used in the present study performs its segmenta-
ion  by looking  at the brain  as a dynamic modular  network.  In a pre-
ious study, a quantitative  comparison using simulated data was per-
ormed between the modularity-based algorithm,  K-means clustering
 E.A. Allen et al., 2014 ), independent component analysis ( O•Neill et al.,
017b ) and the consensus clustering ( Rasero et al., 2017 ), and it  was
hown that  the framework  used here outperformed the other techniques
n terms of spatial and temporal  accuracy. 

. Materials  and  methods  

.1. EEG datasets 

.1.1. Dataset 1 (HBN) 

.1.1.1. Participants. As part of the Healthy Brain Network  (HBN)
iobank release 1 ( Alexander et al., 2017 ) http://fcon_1000.projects.
itrc.org/indi/cmi_healthy_brain_network/sharing_neuro.html  , resting-
tate EEG data were collected from 444 healthy subjects (239 fe-
ale). The release originally  included 603 subjects, but data from
59 subjects were rejected after pre-processing and visual inspection.
ubjects are healthy and aged between 5 and 21 years old. The Ids
f the 444 participants  are listed in Table S7 (see Supplementary
aterials). 
9 
.1.1.2. Data acquisition and pre-processing. High-density  EEG data are
ecorded in a sound-shielded room at a sampling rate of 500 Hz with  a
andpass of 0.1 to 100 Hz, using a 128-channel EEG geodesic hydrocel
ystem by EGI. The recording reference is at Cz (vertex of the head).
he impedance of each electrode is checked prior  to recording, to en-
ure good contact, and is kept below 40 kOhm. Each EEG session con-
isted of 5 min  resting period (in  eyes-closed condition).  As provided
y the HBN, EEG signals were preprocessed using Automagic Matlab

oolbox ( Pedroni et al., 2019 ), visual inspection was also done on the
ata after automatic preprocessing. Brie	y,  it  consists of interpolating

he noisy, 	at  or outlier  channels. The Multiple  Artifact  Rejection Al-
orithm  (MARA) which  automatizes the process of independent compo-
ent analysis (ICA) was used to detect and reject artifacts such as the
ye blinks and the movement artifacts ( Winkler  et al., 2011 ). Then, four
rtifact-free  epochs of 40-s length were selected for  each participant.
his epoch length was used in a previous study, and was considered as
 good compromise between the needed temporal  resolution  and the
esults reproducibility  ( Kabbara et al., 2017 ). 

.1.2. Dataset 2 

.1.2.1. Participants. A total  of 56 healthy subjects were recruited  (29
emale). The mean age was 34.7 years old ( SD = 9.1 years, range = 18…
5). Education ranged from 10 years of schooling to a PhD degree. None
f the volunteers reported taking  any medication or drugs, nor su
ered

rom any past or present neurological  or psychiatric  disease. The study
as approved by the •Comité de Protection des Personnes Sud Méditer-

anée Ž (agreement n° 10…41). Same data were used in previous studies
( Kabbara et al., 2020 )Aya Kabbara et al., 2019 ; Paban et al., 2019 ).
fter  EEG acquisition,  all  participants  have completed the resting-state
uestionnaire (ReSQ). This latter  consists of 62 items organized by �ve
ain types of mental activity:  visual mental imagery, inner language,

omatosensory awareness, inner musical experience, and mental manip-
lation  of numbers ( Delamillieure  et al., 2010 ). Using a scale ranging

rom 0 to 100%, each participant  rated the percentage of time spent in
ach mental activity  during  the resting-state EEG acquisition,  such that

he total  score for  the �ve  types of activities  equaled 100%. 

.1.2.2. Data acquisition and preprocessing. Each EEG session consisted
n a 10-min  resting period with  the participant•s eyes closed. Participants
ere seated in a dimly  lit  room, were instructed to close their  eyes, and

hen to simply  relax until  they were informed  that  they could open their
yes. Participants were informed  that  the resting period would  last ap-
roximately  10 min.  The eyes-closed resting EEG recordings protocol
as chosen to minimize  movement and sensory input  e
ects  on electri-
al brain  activity.  EEG data were collected using a 64-channel Biosemi
ctiveTwo system (Biosemi Instruments, Amsterdam, The Netherlands)
ositioned according to the standard 10…20 system montage, one elec-
rocardiogram,  and two bilateral  electro-oculogram electrodes (EOG)
or horizontal  movements. Nasion-inion and preauricular  anatomical
easurements were made to locate each individual•s  vertex site. Elec-

rode impedances were kept below 20 kOhm. The pre-processing was
ddressed using the same preprocessing steps as described in several
revious studies dealing with  EEG resting-state data (A Kabbara et al.,
018 , 2017 ). Brie	y,  bad channels (signals that  are either completely

at  or contaminated by movement artifacts)  were identi�ed  by visual in-
pection, complemented by the power spectral density. These bad chan-
els were then recovered using an interpolation  procedure implemented

n Brainstorm by using neighboring  electrodes within  a 5-cm radius.
pochs with  voltage 	uctuations  between + 80 � V and Š 80 � V were
ept. Four artifact-free  epochs of 40-s length were selected for  each par-
icipant.  

.1.3. Dynamic brain networks construction 
For the two EEG datasets, dynamic brain  networks were recon-

tructed using the •EEG source connectivity  Ž method ( Hassan and
endling, 2018 ) combined with  a sliding  window  approach as detailed
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n (A. Kabbara et al., 2018 , 2017 ). •EEG source connectivity  Ž involves
wo main steps: i)  solving the inverse problem in order to estimate
he cortical  sources and reconstruct their  temporal  dynamics, and ii)
easuring the functional  connectivity  between the reconstructed time-

eries. 
Brie	y,  the steps performed were the following:  

1 EEGs and MRI template (ICBM152) were coregistered through
the identi�cation  of anatomical landmarks by using Brainstorm
( Tadel et al., 2011 ). 

2 A realistic  head model was built  using the OpenMEEG
( Gramfort  et al., 2010 ) software. 

3 A Desikan-Killiany  atlas-based segmentation approach was used to
parcellate the cortical  surface into  68 regions ( Desikan et al., 2006 ).

4 The weighted minimum  norm estimate (wMNE) algorithm  was
used to estimate the regional time series ( Hamalainen and Il-
moniemi,  1994 ). 

5 The reconstructed regional time series were �ltered  in alpha 8…13 Hz
and beta 13…30 Hz frequency bands, shown to be the most involved
frequency bands at rest. 

6 To compute the functional  connectivity  between the reconstructed
regional time-series, we used the phase locking  value (PLV) metric
( Lachaux et al., 2000 ) de�ned  by the following  equation: 

�  ��  ( � ) =  
�����

1 

�

� + � �2  
�

� Š � �2  
���  ( �  

�
�  �  ( � ) Š �  �  ( � ) 

�
��

�����
(1)

here �  �  ( � ) and �  �  ( � ) are the unwrapped phases of the signals x and y
t time t. The Hilbert  transform was used to compute the instantaneous
hase of each signal. � denotes the size of the window  in which  PLV

s calculated. Dynamic functional  connectivity  matrices were computed
or each epoch using a sliding  window  technique (A. Kabbara et al.,
018 , 2017 ). It  consists in moving a time window  of certain duration
along the time dimension of the epoch, and then PLV is calculated
ithin  each window.  As recommended by ( Lachaux et al., 2000 ), the
umber of cycles should be su�cient  to estimate PLV in a compromise
etween a good temporal  resolution  and a good accuracy. The smallest
umber of cycles recommended equals to 6. For instance, in the alpha
and, we chose the smallest window  length of 571 ms that  is equal to

6 

  ������  � ������
  �  

. 

1 To ensure equal network  density for  all  the dynamic networks com-
puted across time,  a proportional  (density-based) threshold was ap-
plied in a way to keep the top 15% of connectivity  values in each
network.  

.2. MEG dataset (HCP) 

.2.1. Participants 
As part of the HCP MEG2 release ( Van Essen et al., 2012 ), resting-

tate MEG recordings were collected from 61 healthy subjects (38
omen). The release included 67 subjects, but six subjects were omit-

ed from the analysis as their  recordings failed to pass the quality  con-
rol  checks (including  tests for  excessive SQUID jumps, sensible power
pectra, correlations between sensors, and availability  of su�cient  good
uality  recording channels). All  subjects are young (22…35 years of age)
nd healthy.  

.2.2. MEG recordings and pre-processing 
The acquisition  was performed using a whole-head Magnes 3600

canner (4D Neuroimaging, San Diego, CA, USA). Resting state measure-
ents were taken in three consecutive sessions of 6 min  each. During

he scan the subject is instructed to relax with  eyes open and maintain
xation  on a projected crosshair presented on a dark background. Data
ere provided pre-processed, after passing through  a pipeline  that  re-
oved artefactual segments, identi�ed  faulty  recording channels, and

egressed out artefacts which  appear as independent components in an
CA decomposition with  clear artefactual temporal  signatures (such as
ye blinks or cardiac interference). 
10 
.2.3. Dynamic brain networks construction 
Here, we adopted the same pipeline  used by the previous studies

ealing with  the same dataset ( Colclough et al., 2015 ). Thus, to solve
he inverse problem, we have applied a linearly  constrained minimum
ariance beamformer ( Van Veen et al., 1997 ). Pre-computed single-
hell source models are provided by the HCP and the data covariance
ere computed separately in the 1…30 Hz and 30…48 Hz bands as in

 Colclough et al., 2016b ). Data were beamformed onto a 6 mm grid  us-
ng normalized lead �elds.  Then, source estimates were normalized by
he power of the projected sensor noise. Source space data were �ltered
n alpha (8…13 Hz) and beta bands (13…30 Hz). After  obtaining  the re-
ional time series on the basis of the Automated Anatomical  labeling
tlas (AAL)(  Tzourio-Mazoyer et al., 2002 ), a symmetric orthogonaliza-
ion  procedure ( Colclough et al., 2015 )was performed for  signal leakage
emoval. To ultimately  estimate the functional  connectivity  between re-
ional time series, we used the amplitude  envelope correlation  measure
AEC) ( Brookes et al., 2012 ). This method brie	y  consists of 1) com-
uting  the power envelopes as the magnitude of the signal, using the
ilbert  transform, and 2) measuring the linear  amplitude  correlation
etween the logarithms of ROI power envelopes. Finally,  a sliding  win-
ow (length  = 6 s, step = 0.5 s) was applied to construct the dynamic
onnectivity  matrices. This sliding  window  has been previously  used to
econstruct the dynamic networks derived from MEG data ( O•Neill et al.,
017a ). Also, matrices were thresholded by keeping the strongest 15%
onnections of each network.  

.3. Extracting modular brain states 

Modularity  refers to the extent to which  a network  can be separated
nto  modules or communities highly  intra-connected and weakly inter-
onnected ( Sporns and Betzel, 2016 ). To track the transient changes of
he brain  modular  networks over time,  we used our recent proposed
lgorithm  (A. Kabbara et al., 2019 ) that  aims to extract the main modu-

ar structures (i.e. modular  states) that  	uctuate  repetitively  across time.
ach modular  state re	ects  unique spatial modular  organization.  Brie	y,

he algorithm  consists of applying  the following  steps: 
€ Decompose each temporal  network  into  modules. As di
erent  mod-

larity  algorithm  may lead to di
erent  modules (due to the degeneracy
roblem),  we aimed to Combine the results of the commonly used mod-
larity  algorithms:  Girvan-Newman ( Girvan and Newman, 2002 ) and
ouvain algorithm  ( Blondel et al., 2008 ). Each modularity  algorithm
as also repeated for  200 iterations,  as we are aware that  the degener-
cy problem is present across di
erent  runs. This process will  result, for
ach network,  in 400 modular  organizations (200 runs x 2 algorithms).
o de�ne  the �nal  modular  organization,  we performed the consensus
lgorithm  proposed by ( Bassett et al., 2013 ) which  consists of comput-

ng an association matrix  of N x N (where N is the number of nodes)
y counting the number of times two nodes are assigned to the same
odule across the 400 modular  organizations obtained across the 200

uns and the two modularity  algorithms.  The association matrix  is then
ompared to a null  model association matrix  computed from random
ermutations of the original  partitions.  After  this comparison, only  the
igni�cant  values of the association matrix  were retained. The thresh-
lded association matrix  was �nally  clustered using Louvain algorithm
epeated for  100 iterations.  The consensus approach applied on the as-
ociation matrix  was robust across multiple  runs leading to a very low
uality  of consensus. 

€ Assess the similarity  between the temporal  modular  structures us-
ng the z-score of Rand coe�cient,  a value between 0 (totally  di
erent
tructures) and 1 (identical  structures) as proposed by ( Traud et al.,
008 ). This step generated a T x T similarity  matrix  where T is the num-
er of time windows.  

€ Cluster the similarity  matrix  into  modular  states (MS) using the
onsensus modularity  method. This step associates common temporal
odular  structures into  the same state. Hence, a single community  struc-

ure was derived from each MS. This was done by forming  an association
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atrix  from the temporal  modular  a�liations  corresponding to the MS
ollowed  by applying  the consensus algorithm  on the obtained associa-
ion  matrix.  

.4. Extract the modules associated with RSNs 

Our objective is to characterize the dynamic behavior of spontaneous
rain  networks in terms of merging and splitting  across and within  rest-

ng state networks. For this reason, we evaluated the degree of resem-
lance between each module (derived from all  the MSs) and the RSNs
o do that,  we formed di
erent  masks or templates; where each mask is

elated to a RSN, a subpart of a RSN or a combination  between di
erent
SNs. Then, an overall  match for  each module with  each template is
alculated. If  the overlap between the module and a template is higher
han 80%, the module is ultimately  associated to the considered tem-
late. This overlap is calculated using the following  formula:  

 ����  �  �  �,
�  =  
 
�����  

2 �   1 
+  

 
�����  

2 �   2 
(2)

here  
�����  is the number of common nodes between the module
 and the RSN,  1 is the total  number of nodes in the module m,  2

s the total  number of nodes in the RSN. 
The de�nition  of the RSN templates were mainly  based on a previous

tudy described by Shirer et al. ( Shirer et al., 2012 ) in which  functional
etworks were identi�ed:  (anterior/posterior  salience network,  auditory
etwork,  dorsal/ventral  default  mode network,  higher/primary  visual
etwork,  language network,  left/right  executive control  network..).  We
lso added other RSNs based on previous functional  resting-state stud-

es: left/right  temporal  networks and the dorsal attentional  network
 Allen et al., 2017 ; E.A. 2014 ; Baker et al., 2014 ; Damoiseaux et al.,
006 ; Fox and Raichle, 2007 ; Greicius et al., 2003 ). See Table S8 in the
upplemental material  for  the RSNs de�nition.  

This step aims to standardize the extracted communities as •proto-
ype networks (i.e. RSNs) Ž which allows analyzing the consistency of
he derived modules at the group-level and validates the single subject
esults. 

.5. Quanti�cation  

For each module revealed to be associated to an RSN template, two
etrics were computed: 

1 The temporal  fractional  occupancy (FO) which  represents the total
time spent by each module as measured by percentage. Thus, a high
value of FO re	ects  high temporal  dominance of the module. 

2 The mean dwell  time (DT) de�ned  as the average number of con-
secutive windows spent in a speci�c  module. A module with  a high
DT is thus considered as a stable or •steady Ž module, compared to
modules with  low  DT that  are considered as •transient  Ž modules. 

.6. Statistical tests 

In order to investigate whether the observed brain  modules are re-
ated to subjective internal  thoughts and feelings experienced during
esting-state acquisition,  we have assessed the statistical  relationships
etween the occurrence of modules and the phenotypes of cognition
easured by the Resting-State Questionnaire (rsQ). More speci�cally,
earson•s correlation  between the �ve  main indices derived from the

sQ (i.e. visual mental imagery, inner language, somatosensory aware-
ess, inner musical experience, and mental manipulation  of numbers)
nd the fractional  occupancies of the derived modules were computed
or the 57 participants  provided by Dataset 2. To consider the multiple
omparisons problem (between the �ve  types of mental activity,  and
he 11 modules), p -values were corrected using Bonferroni  procedure
 Bland and Altman,  1995 ) yielding  an adjusted threshold of �  <  0 . 0009 .
11 
ode availability  

Data pre-processing was done using automagic Matlab toolbox
ttps://github.com/methlabUZH/automagic  ( Pedroni et al., 2019 ) for
ataset 1. Brainstorm toolbox  ( Tadel et al., 2011 ) was used to
re-process the signals of dataset 2, and to reconstruct the regional time
eries using wMNE. To estimate the head model, OpenMEEG ( Gramfort
t al., 2010 ) software was used. Brain Networks estimation of EEG
ata (datasets 1,2) was done using Matlab. Beamforming construction
nd networks estimation of MEG data (dataset 3) was performed using

he megconnectome pipeline  package https://www.humanconnectome.
rg/software/hcp-meg-pipelines  . The Matlab code developed to extract

he modular  brain  states is publicly  available at https://github.com/
ibrteam/Modularity  _ algorithm  _ NN . BrainNetViewer  (BNV) ( Xia et al.,
013 ) https://www.nitrc.org/projects/bnv/  was used for  networks vi-
ualization. Other homemade codes were also developed for  statistical
ests, and quantitative  evaluation.  

ata availability  

The data used here are all  available. The dataset 1 can be found on
ttp://fcon_1000.projects.nitrc.org/indi/cmi_healthy_brain_network/  

haring_neuro.html , the dataset 2 can be available upon a simple
equest to the correspondent author and the dataset 3 is available on
ttps://db.humanconnectome.org/  . 
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