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The human brain is a dynamic modular network that can be decomposedinto a set of modules, and its activity changescontinually over time. At rest, several brain
networks, known as Resting-StateNetworks (RSNs),emerge and cross-communicateeven at sub-secondtemporal scale.Here, we seekto decipher the fast reshaping
in spontaneousbrain modularity and its relationships with RSNs.We use Electro/Magneto-Encephalography (EEG/MEG) to track the dynamics of modular brain
networks, in three independent datasets(N = 568) of healthy subjectsat rest. We show the presenceof strikingly consistentRSNs,and a splitting phenomenon of some
of these networks, especially the default mode network, visual, temporal and dorsal attentional networks. We also demonstrate that between-subjectsvariability in
mental imagery is associatedwith the temporal characteristics of speci ¢ modules, particularly the visual network. Taken together, our ndings show that large-scale
electrophysiological networks have modularity-dependent dynamic ngerprints at rest.

1. Introduction

Spontaneous brain activity changes continuously, over multiple
temporal scalesranging from sub-secondto years. Those uctuations
involve a set of networks known as resting-state networks (RSNs)
(Damoiseaux et al., 2012; Raichle et al., 2001) . To decipher the
ultra-fast dynamic recon guration of these RSNs and their cross-
communications, severalfunctional studies have beenconducted. Some
studies have described the dynamic topological changesof functional
networks using graph theoretical analysis (de Pasquale et al., 2015;
Jiao et al., 2018; Kabbara et al., 2017). Others focused on detecting
*brain network statese uctuating over time (E.A. Allen et al., 2014;
Bakeret al., 2014). The main idea is that spontaneousbrain activity can
be explained by a set of spatiotemporal network patterns. Most studies
have been performed in combination with dimensionality reduction al-
gorithms (such asK-meansclustering (E.A. Allen et al., 2014), principal
component analysis(Preti and Van De Ville, 2016; Leonardi et al., 2013),
orthogonal connectivity factorization (Hyvéarinen et al., 2016)), or
model-based approaches, such as Hidden Markov Models (Baker et al.,
2014). Features derived from these fast-dynamic analyses were also
shown as potential neuromarkers for somebrain diseases(Filippi et al.,
2019; A Kabbara et al., 2018; Liu et al., 2019) and behavioral charac-
teristics (Kenett et al., 2020; Tompson et al., 2018).

Emerging evidence showsthat the human brain is amodular network
partitioned into *modulese¢)also called communities or clusters) denot-
ing brain regions that are highly intra-connected and weakly connected
with others (Bassettand Sporns, 2017). The modular organization of
the human brain network and its dynamics were shown to be associ-
ated with aging (Meunier et al., 2009) and several task-related brain

Corresponding author.
E-mail addressmahmoud.hassan@univ-rennes1.fr(M. Hassan).

https://doi.org/10.1016/j.neuroimage.2020.117674

functions such as learning (Bassettet al., 2011) and cognitive e orts
(Kitzbichler et al., 2011). While several resting-state functional mag-
netic resonanceimaging (fMRI) studies have been conducted to investi-
gate the time-dependence of brain modular networks (E.A. Allen et al.,
2014; Joneset al., 2012; Zalesky et al., 2014), the evidence for rapid
reshaping in spontaneous modular brain networks and their relation-
ships with  RSNsat timescales associated with fast cognition is very
limited. To precisely track network dynamics, we need a modality
that can match the rapid timescales of the underlying brain functions.
In this context, electro/magneto-encephalography (EEG/MEG) can be
used to describe those fast (sub-millisecond) modularity-dependent
uctuations.

Here, we hypothesized that the dynamic modular reorganization of
the human brain at rest is characterized by a continuous processof sep-
aration and merging within and acrossdi erent RSNsover time. To de-
tect smodular brain statesZ,we usea recently developed framework that
allows to precisely quantify the uctuations of the time-varying estatese
(A. Kabbaraetal., 2019). Unlike other clustering algorithms, this frame-
work detects the fast-transient changesin the brain modular structure
and was shown to outperform other existing clustering algorithms in
terms of spatiotemporal precision. We tested our hypothesis on three
independent EEG/MEG datasets(N = 568) for healthy subjects at rest,
source-reconstructed to 68 regions across the entire cortex. Dynamic
brain networks were reconstructed using the EEG/MEG source connec-
tivity technique using both power- and phase- couplings (Hassanand
Wendling, 2018), combined with a sliding window approach and an al-
gorithm to detect modular states(Fig. 1). Notably, our results revealed
the presenceof consistent network patterns for most participants and
a splitting phenomenon of some of these networks, such as the default
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Fig. 1. Study pipeline. (A) Three datasetswere analyzed: 1) Resting-state EEGdata provided from the healthy brain network biobank including 444 subjects; 2)
Resting-stateEEGdata acquired from 56 healthy subjects;and 3) Resting-stateMEG data provided from the human connectome project including 61 subjects.(B) The

template MRI was segmentedinto regions of interest (ROIs) by the meansof an anatomical atlas (Desikanet al.,

2006). Then, the regional time seriesof each subject

were reconstructed using the weighted minimum norm estimate inverse solution (WMNE) for Datasets1 and 2, and beamforming for Dataset3. (C) Using a sliding
window technique, the dynamic brain networks were computed. (D) The rst stepin the modularity-based algorithm was to parcellate each temporal network into
communities. Then, the similarity between the temporal modular structures was assessed(E) The similarity matrix was segmentedinto di erent communities where
each one representsa modular state of speci ¢ spatial topology combining di erent time windows. (F) Following this, all the modules derived from the di erent
MSswere extracted for each subject. Among them, we only retained those that presented strong association with RSNs(more than 80% of nodal overlap). Pleasesee
Supplementary materials for the de nition of RSNs.(G) The mean dwell time and fractional occupancieswere calculated for the main modules related to RSNs.(For
interpretation of the referencesto color in this gure legend, the reader is referred to the web version of this article.)

mode, visual, temporal and dorsal attentional networks. We speculate
that tracking the fast modular architecture of ongoing neuronal activity
provides new insights into the dynamics of the large-scale electrophys-
iological network organization of the human brain.

2. Results

We performed our analysis on three independent datasets: 1)
Resting-state EEG data provided from the Healthy brain network
biobank comprising 444 subjects; 2) Resting-state EEG data acquired
from 56 healthy subjects; and 3) Resting state MEG data provided
from the Human Connectome Project including 61 subjects. The dy-
namic functional connectivity networks were assessedfor each sub-
ject using the EEG/MEG source connectivity method (Hassan and
Wendling, 2018). For EEG datasets (datasets 1 and 2), we used
the weighted Minimum Norm Estimate (WMNE) followed by phase-
couplings asrecommendedby previous EEGstudies (Hassanet al., 2016;
M. 2014). For the MEG dataset (dataset 3), we used the beamforming
approach followed by envelope-couplings, asrecommendedin previous
MEG studies (O«Neill et al., 2017a; Tijms et al., 2013), with correction

for spatial leakage to reduce volume conduction e ects. Then, a slid-
ing window technique was applied forming a continuous seriesof snap-
shots characterizing the evolution of each individuales functional brain
network (see Materials and Methods for details about the construction
of EEG/MEG functional networks). Then, we applied the modularity-
based algorithm that usesas an input the tensor of dynamic networks
and produce modular states (MSs) uctuating over time, where each
MS represents a unique modular topology. Briey, the algorithm de-
tects the modular structures sharing the same topology by quantify-
ing the similarity between all the computed temporal partitions. We
then identi ed the individual modules presenting a strong association
with one or several RSNs.The full pipeline of the study is illustrated in
Fig. 1.

2.1. 16 stateswereidenti ed for the rst database

Fig. 2 illustrates the 16 modules derived from the 444 subjectsin the
alpha band. It also reports the percentage of subjectsexhibiting each of
the modules. One can realize that three derived modules are related to
the DMN: POST-DMNincluding the posterior components of the DMN
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Fig. 2. Resultsof Dataset1 obtained in the alpha band: Derived modules associatedto RSNsand their corresponding percentage of subjects.

system (posterior cingulate, parahippocampal, precuneus, and inferior
parietal lobule regions), ANT-DMN including the anterior components
of the DMN (prefrontal regions), and DMN which representsthe large
module integrating both posterior and anterior parts into the samemod-
ule. Also, three temporal modular con gurations are depicted: -TEMP
and R-TEMP representing the left and right superior and inferior tem-
poral regions, respectively; and TEMP that combines both left and right
temporal modules. In addition, two modules related to the visual net-
work were observed:the ventral-VIS, including the ventral regions of the
visual network; and VIS integrating ventral and dorsal visual regions.
Overall, the modules ranked from the highest to the lowest percentage
of subjectsare: DMN (present in 96% of subjects), POST-DMN(present
in 88% of subjects), VIS- visual network (presentin 86% of subjects),
ANT-DMN (present in 86% of subjects), SMN- somatomotor network
(present in 83% of subjects), DAN- dorsal attentional network (present
in 80% of subjects), -TEMP (presentin 76% of subjects), TEMP (present
in 63% of subjects), SAN-saliencenetwork (presentin 63% of subjects),
AUD+VIS- (a module that combines both auditory and visual networks,
presentin 61% of subjects), DMN+FPN... (anodule that combines both
default mode and frontoparietal networks, presentin 58% of subjects),
DAN+VIS- (a module that combines DAN and VIS, present in 53% of
subjects), R-TEMP (present in 45% of subjects), FPN (present in 43%

of subjects), AUD+VIS+DAN- (a module combining AUD, VIS and DAN
networks; presentin 35% of subjects) and the ventral-VIS including lin-
gual and fusiform visual regions (present in 25% of subjects). Results
were consistent among several threshold values of functional connec-
tivity matrices (see Table S1) and also within the beta frequency band
(seeTable S4).

2.2. 12 stateswereidenti ed for the seconddatabase

According to the second dataset (Fig. 3), 12 modules are extracted
from the 57 subjectsin the alpha frequency band. These modules are:
POST-DMN (present in 98% of subjects), VIS (present in 94% of sub-
jects), DAN (present in 91% of subjects), DMN (present in 84% of sub-
jects), L-TEMP (presentin 82% of subjects), ANT-DMN (presentin 81%
of subjects), SMN (present in 73% of subjects), AUD+VIS (present in
68% of subjects), DAN+VIS (presentin 60% of subjects), TEMP (present
in 45% of subjects), DMN+CCN(a module that combines DMN with cog-
nitive control components, presentin 32% of subjects)and SAN (present
in 22% of subjects). Resultswere also consistent among several thresh-
old values of functional connectivity matrices (seeTable S2) and within
the beta frequency band (see Table S5).
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Fig. 3. Resultsof Dataset2 obtained in the alpha band: Derived modules associatedto RSNsand their corresponding percentage of subjects.

2.3. 10 stateswereidenti ed for the third database

In Fig. 4, we illustrate the results obtained in the alpha band for the
third dataset showing 10 modules derived from the 61 subjects: DMN
(present in 100% of subjects), POST-DMN(present in 95% of subjects),
VIS (present in 88% of subjects), L-TEMP (present in 78% of subjects),
SAN (present in 72% of subjects), DAN (present in 79% of subjects),
SMN (present in 62% of subjects), AUD+VIS (present in 49% of sub-
jects), DAN+VIS (present in 43% of subjects) and CCN (present in 18%
of subjects). Resultswere consistent among several threshold values of
functional connectivity matrices (see Table S3) and within the beta fre-
quency band (seeTable S6).

In summary, results obtained for the three datasetsrevealed uc-
tuating modules concordant with the well-known RSNs.In particular,
the default mode network was the most consistent network among sub-
jectsin all datasets(re ected by the highest percentageof presenceover
subjects). Resultsalso showed that some RSNspresent various modular
topologies over time such as DMN, temporal and the visual networks.
In addition, modules that combine several RSNs are observed over
time, re ecting cross-network interactions, as discussedbelow in more
details.

Fig. 5 presentsa step-by-stepexample of results obtained for a typical
subject, where 8 MSsare derived. The similarities between the 30 mod-
ules extracted from all MSsand RSNstemplates are assessedFig. 5.C).
Among the 30 modules, 18 modules have survived the 80% threshold on
the nodal overlap. These 18 modules are associatedto 11 RSNs:DMN,
SAN, SMN, VIS, LTEMP, DAN+VIS, AUD+VIS, POST-DMN,DMN+FPN,
FPN, ANT-DMN. Visual inspection of the similarity matrix of Fig. 5.C
reveals that DMN, SMN, VIS, ANT-DMN, AUD+VIS and LTEMP were
representative of two or more modules while SAN, DAN+VIS and POST-
DMN were associatedto a single module. Fig. 5.D presentsthe dynamic
uctuations of the modulesidenti ed, where eachmodule is color-coded
according to its corresponding RSN.

2.4. Dwelltime and the fractional occupancy

In order to quantify the temporal characteristics of each module,
two metrics were computed: dwell time (DT), i.e. the average num-
ber of consecutive windows spent in a module; and the fractional oc-
cupancy (FO), re ecting the proportion of time spent in each mod-
ule. As an example, the modules obtained in Fig. 5 ordered in terms
of FO are: DMN (FO=56%), VIS (FO= 43%), DAN+VIS (FO= 43%),
SMN (FO= 31%), SAN (FO= 19%), LTEMP (FO= 14%), AUD+VIS (FO=
10%), ANT-DMN(FO=4%), POSTDMN(FO= 3%), DMN+FPN (FO=3%),
FPN (FO=3%). In terms of DT, the modules are ordered asfollow: DMN
(DT=16%), VIS (DT=10%), DAN+VIS (DT=7%), SMN (DT= 7%), AUD
+VIS (DT=7%), SAN (DT=6%), POSTDMN(DTF6%), LTEMP (DT=6%),
FPN (DT=5%), DMN+FPN (DT=5%).

Fig. 6 reports the FOsand the mean DTs of the modules obtained for
eachdataset. The DMN (or one of its modular con gurations) hasclearly
the highest FO and DT over all datasets. The VIS network is shown as
signi cant in terms of FO in dataset2. According to the DT, SMN and
SAN are depicted assigni cantly stable modules in dataset 1.

In summary, results obtained from all datasetspoints at the impor-
tance (and stability) of DMN and its role as a functional core network
during rest, asdetailed in Discussion.

2.5. Correlationbetweerthe derivedmodulesand mentalimagery

Finally, we seekat understanding if there is any correlation between
the derived modules and the subject internal thoughts experienced dur-
ing resting-state acquisition measured by the Resting-State Question-
naire (rsQ). Only such data was available for dataset 2. More specif-
ically, the ve main indices derived from the rsQ (i.e. visual mental
imagery, inner language, somatosensory awareness,inner musical ex-
perience, and mental manipulation of numbers) were correlated with
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Fig. 4. Resultsof Dataset3 obtained in the alpha band: Derived modules associatedto RSNsand their corresponding percentage of subjects.

the temporal features of each module. No signi cant correlations were
obtained between any of the rsQ scoresand the DT of extracted modules.

Fig. 7 reports signi cant positive correlations between visual mental
imagery and the fractional occupancy of VIS ( =
0.01;, =047, DAN ( = 0.006; =0491) and
AUD+VIS ( = 0.0003; = 0.57) obtained in the al-
pha band. In the beta band, results show positive correlations between
visual imagery and the FO of AUD+VIS and DAN (see Figure S3).
Results were also consistent across other threshold values (see Figure
S2).

In summary, these results showed that individual variability in the
visual imagery experienced during acquisition was positively related to
the occupancy of speci ¢ modules, mainly VIS, DAN and VIS+AUD.

3. Discussion

Here, we have shown how fast changesin the modular architecture
of large-scaleelectrophysiological networks shapespontaneousbrain ac-
tivity. We used a recently developed algorithm that extracts repetitive
modular brain statesalternating over time. Asopposedto traditional ap-
proaches, the distinctive feature of the applied method residesin track-
ing modular variations of brain networks. The framework was applied
on three independent EEG/MEG datasets,and revealed that RSNsexpe-
rience continuous modular changesre ected by a processof separation
and merging within- and between- the resting networks.

In particular, DMN switches dynamically its modular topology, in
line with many previous studies suggesting that the DMN can actu-
ally be decomposedinto subcomponents, mainly anterior and posterior
(Andrews-Hanna et al., 2007; Moussaet al., 2011; Wenset al., 2019).
The process of association and dissociation within DMN components
was also revealed by Allen et al. (E.A. Allen et al., 2014), where brain
stateswere described using K-meansclustering. More importantly, sev-

eral studies have also showed that the dynamic states transition leads
to the inclusion of some FPN regions in the DMN in some brain states
(E.A. Allen et al., 2014; Liu et al., 2019), which was also obtained in
our study (results of dataset 1). Similarly, the temporal network alter-
natesits recon guration between left, right and complete modules. This
nding isin line with previous results depicting the left part of the tem-
poral network as an independent network state (Baker et al., 2014).
The dynamic modular behavior of the resting brain was also revealed
by the occurrence of modules integrating di erent RSNs.For instance,
the DAN expands dynamically its network to include visual compo-
nents. The dynamic inclusion of these networks re ects the presence
of a high correlation between them, which was supported in previous
studies (E.A. Allen et al., 2014; Liu et al., 2019).

Our ndings agree with previous studies suggesting that dynamic
changesin brain networks are present during spontaneousactivity. As
an example, (Zalesky et al., 2014) showed that some brain regions
are transmodal (i.e., connected to di erent resting state networks over
time). Theseregions are highly dynamic and change their modular af-
liation over time. A similar observation was obtained in a previous
study where hubs dynamically alternate its role between provincial and
connector (Kabbaraet al., 2017). This dynamic processof splitting and
merging the di erent sub-systemsduring time allows the brain to bal-
ance segregatedand integrated neural dynamics. To test whether there
may be a sort of hierarchy in terms of the consistency of brain regions,
we also reported, for each RSN, the regions included and their contribu-
tions acrosssubjectsof all datasets(in%). Oncea module was associated
to a specic RSN, the overlapping nodes were identied to ultimately
compute the rate of their inclusion acrossall subjectsand datasets.Fig-
ure S1 shows that despite the inter-subject variability, some specic
brain regions contribute more consistently to a speci ¢ RSNthan others.

The DMN (in its di erent con gurations) was the most consistent
module obtained acrosssubjects, since it had the highest percentage of
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Fig. 5. Resultsof atypical subject. (A) dynamic uctuation of the 8 modular statesextracted for this speci ¢ subject, (B) spatial representation of all modules derived
from each MS. (C) similarity matrix between all MSsmodules and RSNtemplates (for simplicity, only RSNsshowing an overlap greater than 80% with one of the
modules were mentioned), marks the overlap values higher than 80%. (D) dynamic uctuations of modules surviving the 80% overlap threshold and associatedto
RSNtemplates. Thesemodules are color-coded according to the corresponding RSNs(shown on the right of Fig. 5.C).



A. Kabbara, V. Pabanand M. Hassan Neurolmage227 (2021) 117674

Fig. 6. Violin plots showing fractional occupancy and mean dwell time of derived modules obtained for (A) Datasetl, (B) Dataset2and (C) Dataset3. The horizontal
dashedline that appearsin each plot denotesthe mean plus two standard deviations. mark signi cant modules (average > mean value + 2 standard deviations).

Fig. 7. Signi cant associationsbetween visual mental imagery and fractional occupanciesof VIS, AUD and DAN modules in the alpha band (dataset 2).
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presenceover subjects/datasets,with the high fractional occupancyval-
ues. These ndings highlight the key role of DMN in integrating infor-

mation in spontaneousbrain activity, in accordancewith the presence
of a large proportion of hubs associatedto this network (de Pasquale
et al., 2015; Kabbara et al., 2017; van den Heuvel and Sporns, 2013).

Furthermore, DMN con gurations had the greatest stability over time

(re ected by the highest mean dwell duration). Such ndings support
previous studies showing that functional connections within the rich-

club core (where most regions are aliated to the DMN) exhibit the
greatest stability over time. In these studies, the high temporal stabil-
ity of DMN has been associated with high dependency on the under-
lying structural brain topology, since high similarity was obtained be-
tween resting-state functional and structural networks when the sam-
ple duration increases. In contrast to this, modules with low dwell

time were transient and exhibited greatest variability during time re-
ecting the dynamic functional coordination. In our study, the de-
rived transient modules depend on each subject and database. Mostly,

they belong to high-level cognitive networks, attentional networks and
the sensory networks. In all databases,these transient modules show-
ing signi cant lower dwell times are those integrating multiple RSNs
(DAN+VIS, AUD+VISf). One possible explanation is that individuals

dynamically engagein several mental thoughts during resting periods,
while imagery and mind-wandering remain the predominant activities

(Delamillieure etal., 2010; Doucetet al., 2012). Thus, the perspective of
looking at the brain asa dynamic systemwhere stable activity is inter-

twined by transient functional variabilities is supported by many studies
(Honey et al., 2007; Liu et al., 2019; Van De Ville et al., 2010).

In addition, our study highlights the signi cant presenceof the vi-
sual network showing a high occupancy rate during time (results of
datasets1 and 2). Such observation can be associatedwith the domi-
nance of the visual imagery activity exhibited by most subjects during
resting state acquisition (Delamillieure et al., 2010). More interestingly,
the individual variability in the visual imagery experienced during ac-
quisition was revealed to be positively correlated to the fractional oc-
cupancy of VIS network (Fig. 7). Similar correlations were reported by
previous studies (Pipinis et al., 2017; Sto ers et al., 2015). In addition,
the signi cant relationships assesseetween the mental imagery with
AUD, DAN and VIS might explain the cross-interactions observed be-
tween thesenetworks forming one large module over time (the presence
of DAN+VIS+AUD observedin the results of dataset1, Fig. 2).

Acrossthe three datasets,our results showed 9 common RSNs:DMN,
POST-DMN,VIS, SMN, SAN, LTEMP, VIS+AUD, DAN+VIS. Thesestrik-
ing consistent results have been obtained independently from the tech-
nique used to record signals (EEG or MEG), preprocessing steps (auto-
matic in dataset 1 vs. manual in dataset 2 and 3), source reconstruc-
tion (WMNE vs. Beamforming), adjacency matrices thresholding value,
EEG/MEG frequency bands (alpha vs. beta), atlas parcellation (68 De-
sikan Killiany vs 78 AAL) and functional connectivity measures(phase
vs. envelope couplings), aswell aseither with or without correcting the
zero-lag correlations.

However, other modules arise from each dataset (Figs. 2,3,4). The
inter-subject variability was also revealed by the percentage of subjects
showing each derived module. Among the same dataset, these individ-
ual di erences are thought to be associatedwith variability in cognitive
and behavioral functions. This has been supported by di erent studies
showing that the dynamic network characteristics signi cantly correlate
with intelligence, creativity and executive function (Bassettet al., 2015;
Kenettetal., 2020; Tompsonet al., 2018). Here, between-subjectsvaria-
tion in the temporal characteristics of speci ¢ modules, mainly VIS,AUD
and DAN, was associatedwith self-report rating of mental visual imagery
as measured by the resting-state questionnaire. The dependenceof ob-
servedbrain activity on the inner thoughts and feeling experienced dur-
ing resting acquisition was emphasized by multiple studies (Diaz et al.,
2016; Pipinis et al., 2017; Sto ers et al., 2015).

Despite the overall consistency of our ndings, results over the
three datasets were not perfectly the same. For instance, the DMN

Neurolmage227 (2021) 117674

were present 96%, 98% and 100% over dataset 1, 2 and 3 respec-
tively while the VIS network was present 86%, 94% and 88%. Also re-
sults showed the absenceof the ANT-DMN in dataset 3, the absenceof
FPNin dataset 2 and 3 and the absenceof CCNin datasetl. The dis-
crepancy of results obtained from dierent datasetsmay be related to
some di erences in the datasets such as the sample size, age of sub-
jects and the conditions of experiments (i.e. eyesclosed/eyes opened).
In fact, while RSNshave beensuccessfullyextracted in both eyes-opened
(E.A. Allen et al., 2014; Baker et al., 2014; de Pasqualeet al., 2018)
and eyes-closedconditions (Bernaset al., 2018; Kabbara et al., 2017;
Owen et al., 2013), many studies have been conducted to investigate
the functional connectivity dierences in RSNsbetween eyes closed
and eyesopened conditions (Agcaoglu et al., 2019; Patriat et al., 2013;
Van Dijk et al., 2010; Yan et al., 2009). Our results on dataset 3 (ac-
quired in eyesopened condition) showing the highest DMN occurrence
(100%) among other datasets (acquired in eyes closed condition) can
be related with the studies revealing higher DMN functional connec-
tivity in the eyes opened as compared to the eyes closed condition

(Van Dijk et al., 2010; Yan et al., 2009). An additional cause for the
discrepancy of results between datasetsis the use of di erent modali-

ties (MEG/EEG). More precisely, MEG/EEG di erences proved to arise
particularly when investigating transient resting-state functional con-
nectivity patterns (Coqueletet al., 2020).

The relevance of the alpha to beta frequency range (8...30Hz) in
driving spontaneouslarge-scale neuronal interactions was revealed by
multiple EEG/MEG studies (Brookes et al., 2011; de Pasqualeet al.,
2015; Hipp et al., 2012; Kabbara et al., 2017; Liu et al., 2010).
Since correlation patterns depend on the underlying oscillation fre-
quency (Brookeset al., 2011; Hipp et al., 2012; Vidaurre et al., 2018),
we have veried the reproducibility of the obtained results in these
two frequency bands. The main conclusions of the study remain in-
tact (see Table S4, Table S5, Table S6, Figure S3): i) distinct mod-
ules concordant with the well-known RSNs uctuate during time, ii)
the default mode network is detected as the most consistent, dom-
inant and stable module which dynamically alternates its modular
topology, iii) modules that combine several RSNsare observed dur-
ing time, re ecting cross-network interactions such as DAN-VIS, and
iv) signicant positive correlation was revealed between the frac-
tional occurrences of some speci ¢ modules and the mental imagery.
Nevertheless, slight di erences were observed in the derived mod-
ules and their temporal characteristics between the two frequency
bands.

From a methodological viewpoint, we have adopted in each dataset
the pipeline (from data processingto networks construction) used by
the previous studies dealing with the samedatasets. Therefore, for EEG
datasets,we used the wWMNE/PLV combination to reconstruct dynamic
networks, since it is supported by several studies on resting EEG and
two comparative studies (Hassanet al., 2016; M. 2014). For the MEG
dataset, beamforming construction combined with amplitude correla-
tion (and orthogonalization) between band-limited power envelopswas
used by multiple studies using the MEG HCP data (Brookeset al., 2012;
Colclough et al., 2015). The suitable window width is a crucial issue
in reconstructing dynamic functional networks. On the one hand, short
windows do not contain su cient information to accurately estimate
connectivity. Onthe other hand, large windows might fail to capture the
temporal changesof brain networks. Hence, the ideal is to choosethe
shortestwindow that guaranteesa su cient number of data points over
which connectivity is computed. This dependson the frequency band of
interest that a ects the degreeof freedom in time series.|t also depends
on the correlation measureused.In EEGdatasets,we adopted the recom-
mendation of Lachauxet al. (Lachauxet al., 2000) in selecting the small-
estappropriate window length o ering 6 number of scycleseat the given
frequency band. The reproducibility of resting state results whilst chang-
ing the size of the sliding window was validated in a previous study
(Kabbara et al., 2017). In MEG, we used the same correlation method
with the corresponding sliding window size (0.5 s) usedin previous stud-
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ies dealing with the samedataset(Colclough et al., 2016a; O<Neill et al.,
2017b).

While EEG/MEG modalities presenta key advantagefor tracking dy-
namic brain processesn the time frame in which these processesoccur
(namely in the sub-secondrange), they are limited in terms of spatial
coverage. Basically, the main causeof this poor spatial resolution is the
svolume conductionZ problem which distorts signals, inducing, at each
scalp position, a mixture e ect of the underlying sources.Readersmay
refer to (Scho elen and Gross,2009) for more details about this issue.
Although the EEG/MEG source connectivity method contributes to en-
hance the spatial resolution by reducing the e ects of the volume con-
duction problem, it remains unable to completely remove source leak-
agee ects (Hassanand Wendling, 2018). More precisely, it is di cult
to pinpoint the activity originating from distinct but closely adjacent
sources. For this reason, in our study, we avoided the use of a high
number of ROIs. Thus, we used 68 anatomical ROIs in EEG datasets,
and 78 ROIsin MEG dataset as done in previous resting-state studies
showed that these ROls are su cient in extracting the global charac-
teristics of the brain networks with acceptable spatial resolution while
minimizing the problem of spurious connections between every close
sourcesZ (Kabbara et al., 2017). The Desikan_Killiany atlas (68 ROls)
was also usedto extract useful information focusing on investigating the
«large-scaleZ networks derived from spontaneousactivity in the context
of personality traits (Aya Kabbara et al., 2019), and brain disorders (A.
Kabbaraet al., 2018). In addition, we have limited our source spaceto
the cortex without including sub-cortical structures.

In this study, we used a proportional threshold (highest 15% of the
edgessweights) to remove weak connections. The stability of network-
basedfeatures acrossproportional thresholds was indeed supported by
(Garrison et al., 2015) in contrary to absolute thresholds. In addition,
applying a proportional threshold is important to ensure equal density
between networks derived from dierent time windows and subjects.
Nevertheless, and in order to ensure that the obtained results are not
sensitive to the threshold value, we performed our analysis acrossthree
proportional thresholds: 5%, 15%, 30%. High agreementamong the ob-
tained results was found, seeSupplementary Materials (Table S1, Table
S2, Table S3, Figure S2).

To extract the fast transient modules, we have applied the
modularity-based algorithm that extracts the main modular brain states
uctuating over time (A. Kabbaraet al., 2019). Other strategies aiming
at identifying the connectivity states exist such as K-means clustering,
ICA and PCA for instance. However, in these frameworks, states are
identied without considering the modular organization of networks.
Instead, the algorithm usedin the present study performs its segmenta-
tion by looking at the brain as a dynamic modular network. In a pre-
vious study, a quantitative comparison using simulated data was per-
formed between the modularity-based algorithm, K-means clustering
(E.A.Allen etal., 2014), independent component analysis (O<Neill et al.,
2017b) and the consensusclustering (Raseroet al., 2017), and it was
shown that the framework usedhere outperformed the other techniques
in terms of spatial and temporal accuracy.

4. Materials and methods
4.1. EEGdatasets

4.1.1. Datasetl (HBN)

4.1.1.1. Participants. As part of the Healthy Brain Network (HBN)
Biobank release 1 (Alexander et al., 2017) http://fcon_1000.projects.
nitrc.org/indi/cmi_healthy_brain_network/sharing_neuro.html , resting-
state EEG data were collected from 444 healthy subjects (239 fe-
male). The release originally included 603 subjects, but data from
159 subjects were rejected after pre-processing and visual inspection.
Subjects are healthy and aged between 5 and 21 years old. The Ids
of the 444 participants are listed in Table S7 (see Supplementary
materials).
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4.1.1.2. Data acquisitionand pre-processing.High-density EEGdata are
recorded in a sound-shielded room at a sampling rate of 500 Hz with a
bandpassof 0.1 to 100 Hz, using a 128-channel EEGgeodesichydrocel
system by EGI. The recording reference is at Cz (vertex of the head).
The impedance of each electrode is checked prior to recording, to en-
sure good contact, and is kept below 40 kOhm. Each EEG sessioncon-
sisted of 5 min resting period (in eyes-closedcondition). As provided
by the HBN, EEG signals were preprocessedusing Automagic Matlab
toolbox (Pedroni et al., 2019), visual inspection was also done on the
data after automatic preprocessing. Briey, it consists of interpolating

the noisy, at or outlier channels. The Multiple Artifact Rejection Al-
gorithm (MARA) which automatizes the processof independent compo-
nent analysis (ICA) was used to detect and reject artifacts such as the
eyeblinks and the movement artifacts (Winkler etal., 2011). Then, four
artifact-free epochs of 40-s length were selected for each participant.

This epoch length was usedin a previous study, and was considered as
a good compromise between the needed temporal resolution and the
results reproducibility (Kabbaraet al., 2017).

4.1.2. Dataset2

4.1.2.1. Participants. A total of 56 healthy subjectswere recruited (29
female). The mean agewas 34.7 yearsold (SD= 9.1 years,range = 18...
55). Education ranged from 10 years of schooling to a PhD degree.None
of the volunteers reported taking any medication or drugs, nor su ered
from any past or present neurological or psychiatric disease.The study
was approved by the «Comité de Protection desPersonnesSud Méditer-
ranéeZ (agreementn® 10...41) Samedata were usedin previous studies
((Kabbara et al., 2020)Aya Kabbara et al., 2019; Paban et al., 2019).
After EEGacquisition, all participants have completed the resting-state
questionnaire (ReSQ).This latter consistsof 62 items organized by ve
main types of mental activity: visual mental imagery, inner language,
somatosensoryawareness,inner musical experience,and mental manip-
ulation of numbers (Delamillieure et al., 2010). Using a scale ranging
from 0 to 100%, each participant rated the percentage of time spentin
eachmental activity during the resting-state EEGacquisition, such that
the total scorefor the ve types of activities equaled 100%.

4.1.2.2. Data acquisitionand preprocessing.Each EEGsessionconsisted
in a10-min resting period with the participantes eyesclosed. Participants
were seatedin a dimly lit room, were instructed to closetheir eyes,and
then to simply relax until they were informed that they could open their
eyes. Participants were informed that the resting period would last ap-
proximately 10 min. The eyes-closedresting EEG recordings protocol
was chosento minimize movement and sensoryinput e ects on electri-
cal brain activity. EEGdata were collected using a 64-channel Biosemi
ActiveTwo system (Biosemi Instruments, Amsterdam, The Netherlands)
positioned according to the standard 10...20system montage, one elec-
trocardiogram, and two bilateral electro-oculogram electrodes (EOG)
for horizontal movements. Nasion-inion and preauricular anatomical
measurementswere made to locate each individuales vertex site. Elec-
trode impedances were kept below 20 kOhm. The pre-processing was
addressed using the same preprocessing steps as described in several
previous studies dealing with EEGresting-state data (A Kabbara et al.,
2018, 2017). Briey, bad channels (signals that are either completely
at or contaminated by movement artifacts) were identi ed by visual in-
spection, complemented by the power spectral density. Thesebad chan-
nels were then recovered using an interpolation procedure implemented
in Brainstorm by using neighboring electrodes within a 5-cm radius.
Epochs with voltage uctuations between +80 V and S80 V were
kept. Four artifact-free epochsof 40-slength were selectedfor each par-
ticipant.

4.1.3. Dynamicbrain networksconstruction

For the two EEG datasets, dynamic brain networks were recon-
structed using the *EEG source connectivity Z method (Hassan and
Wendling, 2018) combined with a sliding window approach asdetailed
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in (A. Kabbaraet al., 2018, 2017). *EEG source connectivity Z involves
two main steps: i) solving the inverse problem in order to estimate
the cortical sourcesand reconstruct their temporal dynamics, and ii)
measuring the functional connectivity between the reconstructed time-
series.

Briey, the stepsperformed were the following:

EEGs and MRI template (ICBM152) were coregistered through
the identi cation of anatomical landmarks by using Brainstorm
(Tadel et al., 2011).

2 A realistic head model was built
(Gramfort et al., 2010) software.

3 A Desikan-Killiany atlas-basedsegmentation approach was used to
parcellate the cortical surfaceinto 68 regions (Desikanet al., 2006).

4 The weighted minimum norm estimate (WMNE) algorithm was
used to estimate the regional time series (Hamalainen and II-
moniemi, 1994).

5 Thereconstructed regional time serieswere ltered in alpha8...13Hz
and beta 13...3(Hz frequency bands, shown to be the most involved
frequency bands at rest.

6 To compute the functional connectivity between the reconstructed
regional time-series, we used the phaselocking value (PLV) metric
(Lachauxet al., 2000) de ned by the following equation:

1 + 2

S 2

[N

using the OpenMEEG

()= ( 08
where ()and () are the unwrapped phasesof the signals x and y
at time t. The Hilbert transform was usedto compute the instantaneous
phase of each signal. denotes the size of the window in which PLV
is calculated. Dynamic functional connectivity matrices were computed
for each epoch using a sliding window technique (A. Kabbara et al.,
2018, 2017). It consistsin moving a time window of certain duration

along the time dimension of the epoch, and then PLV is calculated
within each window. As recommended by (Lachaux et al., 2000), the
number of cycles should be su cient to estimate PLVin a compromise
between a good temporal resolution and a good accuracy. The smallest
number of cycles recommended equalsto 6. For instance, in the alpha
band, \éve chose the smallest window length of 571 ms that is equal to

0 ()

1 To ensure equal network density for all the dynamic networks com-
puted acrosstime, a proportional (density-based) threshold was ap-
plied in a way to keep the top 15% of connectivity values in each
network.

4.2. MEG dataset(HCP)

4.2.1. Participants

As part of the HCP MEG2 release (Van Essenet al., 2012), resting-
state MEG recordings were collected from 61 healthy subjects (38
women). The releaseincluded 67 subjects, but six subjects were omit-
ted from the analysis astheir recordings failed to passthe quality con-
trol checks (including tests for excessiveSQUID jumps, sensible power
spectra, correlations between sensors,and availability of su cient good
quality recording channels). All subjectsare young (22...35/ears of age)
and healthy.

4.2.2. MEGrecordingsand pre-processing

The acquisition was performed using a whole-head Magnes 3600
scanner(4D Neuroimaging, SanDiego, CA, USA). Resting state measure-
ments were taken in three consecutive sessionsof 6 min each. During
the scanthe subject is instructed to relax with eyesopen and maintain
xation on a projected crosshair presentedon a dark background. Data
were provided pre-processed,after passing through a pipeline that re-
moved artefactual segments,identi ed faulty recording channels, and
regressedout artefacts which appear asindependent componentsin an
ICA decomposition with clear artefactual temporal signatures (such as
eye blinks or cardiac interference).

10
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4.2.3. Dynamicbrain networksconstruction

Here, we adopted the same pipeline used by the previous studies
dealing with the same dataset (Colclough et al., 2015). Thus, to solve
the inverse problem, we have applied a linearly constrained minimum
variance beamformer (Van Veen et al., 1997). Pre-computed single-
shell source models are provided by the HCP and the data covariance
were computed separately in the 1...30Hz and 30...48Hz bands as in
(Colclough et al., 2016b). Data were beamformed onto a 6 mm grid us-
ing normalized lead elds. Then, source estimates were normalized by
the power of the projected sensornoise. Sourcespacedata were ltered
in alpha (8...13Hz) and beta bands (13...30Hz). After obtaining the re-
gional time series on the basis of the Automated Anatomical labeling
atlas (AAL)(Tzourio-Mazoyer et al., 2002), a symmetric orthogonaliza-
tion procedure (Colclough et al., 2015)was performed for signal leakage
removal. To ultimately estimate the functional connectivity between re-
gional time series,we usedthe amplitude envelope correlation measure
(AEC) (Brookes et al., 2012). This method briey consists of 1) com-
puting the power envelopes as the magnitude of the signal, using the
Hilbert transform, and 2) measuring the linear amplitude correlation
between the logarithms of ROI power envelopes. Finally, a sliding win-
dow (length = 6 s, step = 0.5 s) was applied to construct the dynamic
connectivity matrices. This sliding window has been previously usedto
reconstruct the dynamic networks derived from MEGdata (O<Neill et al.,
2017a). Also, matrices were thresholded by keeping the strongest 15%
connections of each network.

4.3. Extractingmodular brain states

Modularity refers to the extent to which a network can be separated
into modules or communities highly intra-connected and weakly inter-
connected (Spornsand Betzel, 2016). To track the transient changesof
the brain modular networks over time, we used our recent proposed
algorithm (A. Kabbaraet al., 2019) that aims to extract the main modu-
lar structures (i.e. modular states)that uctuate repetitively acrosstime.
Eachmodular statere ects unique spatial modular organization. Brie'y,
the algorithm consistsof applying the following steps:

€ Decomposeeachtemporal network into modules. Asdi erent mod-
ularity algorithm may lead to di erent modules (due to the degeneracy
problem), we aimed to Combine the results of the commonly used mod-
ularity algorithms: Girvan-Newman (Girvan and Newman, 2002) and
Louvain algorithm (Blondel et al., 2008). Each modularity algorithm
was also repeated for 200 iterations, aswe are aware that the degener-
acy problem is presentacrossdi erent runs. This processwill result, for
each network, in 400 modular organizations (200 runs x 2 algorithms).
To de ne the nal modular organization, we performed the consensus
algorithm proposed by (Bassettet al., 2013) which consistsof comput-
ing an association matrix of N x N (where N is the number of nodes)
by counting the number of times two nodes are assignedto the same
module acrossthe 400 modular organizations obtained acrossthe 200
runs and the two modularity algorithms. The association matrix is then
compared to a null model association matrix computed from random
permutations of the original partitions. After this comparison, only the
signi cant values of the association matrix were retained. The thresh-
olded association matrix was nally clustered using Louvain algorithm
repeated for 100 iterations. The consensusapproach applied on the as-
sociation matrix was robust acrossmultiple runs leading to a very low
quality of consensus.

€ Assesghe similarity between the temporal modular structures us-
ing the z-scoreof Rand coe cient, a value between 0 (totally di erent
structures) and 1 (identical structures) as proposed by (Traud et al.,
2008). This stepgenerateda T x T similarity matrix where T is the num-
ber of time windows.

€ Cluster the similarity matrix into modular states (MS) using the
consensusmodularity method. This step associatescommon temporal
modular structures into the samestate. Hence,a single community struc-
ture was derived from eachMS. This was done by forming an association
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matrix from the temporal modular a liations corresponding to the MS
followed by applying the consensusalgorithm on the obtained associa-
tion matrix.

4.4. Extractthe modulesassociatedvith RSNs

Our objective is to characterize the dynamic behavior of spontaneous
brain networks in terms of merging and splitting acrossand within rest-
ing state networks. For this reason, we evaluated the degree of resem-
blance between each module (derived from all the MSs)and the RSNs.
To do that, we formed di erent masksor templates; where each maskis
related to a RSN,a subpart of a RSNor a combination between di erent
RSNs.Then, an overall match for each module with each template is
calculated. If the overlap between the module and a template is higher
than 80%, the module is ultimately associatedto the considered tem-
plate. This overlap is calculated using the following formula:

T2 172 2 @
Where is the number of common nodes between the module
m and the RSN, 1 is the total number of nodesin the module m, 2
is the total number of nodesin the RSN.

The de nition of the RSNtemplates were mainly basedon a previous
study described by Shirer et al. (Shirer et al., 2012) in which functional
networks were identi ed: (anterior/posterior saliencenetwork, auditory
network, dorsal/ventral default mode network, higher/primary visual
network, language network, left/right executive control network..). We
also added other RSNsbasedon previous functional resting-state stud-
ies: left/right temporal networks and the dorsal attentional network
(Allen et al., 2017; E.A. 2014; Baker et al., 2014; Damoiseaux et al.,
2006; Fox and Raichle, 2007; Greicius et al., 2003). SeeTable S8in the
supplemental material for the RSNsde nition.

This step aims to standardize the extracted communities as proto-
type networks (i.e. RSNsY which allows analyzing the consistency of
the derived modules at the group-level and validates the single subject
results.

4.5. Quanti cation

For each module revealed to be associatedto an RSNtemplate, two
metrics were computed:

1 The temporal fractional occupancy (FO) which representsthe total
time spentby eachmodule asmeasuredby percentage. Thus, a high
value of FOre ects high temporal dominance of the module.

2 The mean dwell time (DT) de ned as the average number of con-
secutive windows spentin a speci ¢ module. A module with a high
DT is thus considered as a stable or *steadyZ module, compared to
modules with low DT that are considered as transient Z modules.

4.6. Statisticaltests

In order to investigate whether the observed brain modules are re-
lated to subjective internal thoughts and feelings experienced during
resting-state acquisition, we have assessedhe statistical relationships
between the occurrence of modules and the phenotypes of cognition
measured by the Resting-State Questionnaire (rsQ). More speci cally,
Pearsonescorrelation between the ve main indices derived from the
rsQ (i.e. visual mental imagery, inner language, somatosensoryaware-
ness,inner musical experience, and mental manipulation of numbers)
and the fractional occupanciesof the derived modules were computed
for the 57 participants provided by Dataset2. To consider the multiple
comparisons problem (between the ve types of mental activity, and
the 11 modules), p-values were corrected using Bonferroni procedure
(Bland and Altman, 1995) yielding an adjusted threshold of < 0.0009
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Code availability

Data pre-processing was done using automagic Matlab toolbox
https://github.com/methlabUZH/automagic ~ (Pedroni et al., 2019) for
dataset 1. Brainstorm toolbox (Tadel et al., 2011) was used to
pre-processthe signals of dataset2, and to reconstruct the regional time
seriesusing WMNE. To estimate the head model, OpenMEEG(Gramfort
et al., 2010) software was used. Brain Networks estimation of EEG
data (datasets 1,2) was done using Matlab. Beamforming construction
and networks estimation of MEG data (dataset 3) was performed using
the megconnectomepipeline packagehttps://www.humanconnectome.
org/software/hcp-meg-pipelines . The Matlab code developed to extract
the modular brain states is publicly available at https:/github.com/
librteam/Modularity _algorithm _NN. BrainNetViewer (BNV) (Xia et al.,
2013) https://www.nitrc.org/projects/bnv/ was used for networks vi-
sualization. Other homemade codeswere also developed for statistical
tests, and quantitative evaluation.

Data availability

The data used here are all available. The dataset1 can be found on
http://fcon_1000.projects.nitrc.org/indi/cmi_healthy brain_network/
sharing_neuro.html, the dataset 2 can be available upon a simple
request to the correspondent author and the dataset 3 is available on
https://db.humanconnectome.org/ .
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