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Abstract

Chronic Chagas disease cardiomyopathy (CCC), an especially aggressive inflammatory

dilated cardiomyopathy caused by lifelong infection with the protozoan Trypanosoma cruzi,

is a major cause of cardiomyopathy in Latin America. Although chronic myocarditis may

play a major pathogenetic role, little is known about the molecular mechanisms responsible

for its severity. The aim of this study is to study the genes and microRNAs expression in tis-

sues and their connections in regards to the pathobiological processes. To do so, we inte-

grated for the first time global microRNA and mRNA expression profiling from myocardial

tissue of CCC patients employing pathways and network analyses. We observed an enrich-

ment in biological processes and pathways associated with the immune response and

metabolism. IFNγ, TNF and NFkB were the top upstream regulators. The intersections

between differentially expressed microRNAs and differentially expressed target mRNAs

showed an enrichment in biological processes such as Inflammation, inflammation, Th1/

IFN-γ-inducible genes, fibrosis, hypertrophy, and mitochondrial/oxidative stress/antioxidant

response. MicroRNAs also played a role in the regulation of gene expression involved in the

key cardiomyopathy-related processes fibrosis, hypertrophy, myocarditis and arrhythmia.

Significantly, a discrete number of differentially expressed microRNAs targeted a high num-

ber of differentially expressed mRNAs (>20) in multiple processes. Our results suggest that

miRNAs orchestrate expression of multiple genes in the major pathophysiological
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processes in CCC heart tissue. This may have a bearing on pathogenesis, biomarkers and

therapy.

Author summary

Chronic Chagas disease cardiomyopathy (CCC), an aggressive dilated cardiomyopathy

caused by Trypanosoma cruzi, is a major cause of cardiomyopathy in Latin America. Little

is known about the molecular mechanisms responsible for its severity. Authors study the

possible role of microRNAs in the regulation of gene expression in relevant pathways and

pathobiological processes. Differentially expressed genes (DEGs) and differentially

expressed miRNAs (DEMs) -small RNAs that can regulate gene expression—associated to

severe cardiomyopathy development. The inflammatory mediator Interferon-γ was the

most likely inducer of gene expression in CCC, and most genes belonged to the immune

response, fibrosis, hypertrophy and mitochondrial metabolism. A discrete number of dif-

ferentially expressed mRNAs targeted a high number of differentially expressed mRNAs

in multiple processes. Moreover, several pathways had multiple targets regulated by

microRNAs, suggesting synergic effect. Results suggest that microRNAs orchestrate

expression of multiple genes in the major pathophysiological processes in CCC heart

tissue.

Introduction

Chagas disease is a major public health problem in Latin America, resulting from lifelong

infection with the protozoan parasite Trypanosoma cruzi. Up to 30 years after acute infection,

approximately 30% of the 6 million infected people eventually develop chronic Chagas cardio-

myopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy [1,2]. Most other T.

cruzi-infected patients will remain asymptomatic for life (60%) or develop digestive disease,

which causes less deaths (approx. 10%) [1]. Chagas disease is the most common cause of non-

ischemic cardiomyopathy in Latin America, causing approximately 10,000 deaths/year, mainly

due to heart failure and severe arrhythmia/sudden death [1]. Migration turned Chagas disease

into a global health problem, with an estimated 400,000 infected persons living in nonendemic

countries, mainly the United States and Europe. Current anti–T. cruzi drugs have shown to be

unable to block progression toward CCC [3].

After acute infection, parasitism is partially controlled by the immune response, and low-

grade parasite persistence fuels the systemic production of inflammatory cytokines like IFN-γ
and TNF-α, which is more intense in CCC than ASY patients [4–6]. CCC is characterized by a

monocyte and T cell-rich myocarditis [7,8] with cardiomyocyte damage and hypertrophy, and

prominent fibrosis; T. cruzi parasites are very scarce. IFN-γ producing Th1 cells accumulate in

the myocardium of CCC patients [4,9,10] in response to locally produced chemokine ligands

CXCL9 and CCL5 [11]. Accordingly, IFN-γ was found to be the most highly expressed cyto-

kine mRNA in CCC myocardium using a 13-cytokine panel [12]. Both heart-crossreactive

[13] and T. cruzi-specific T cells [14] have been found in CCC heart tissue, and both and may

play a role in the myocarditis of CCC. Together, evidence suggests that myocarditis and IFNγ
signaling plays a major pathogenic role in CCC development and severity (reviewed in [2,15]),

although downstream events leading to the heart disease phenotype are still obscure.
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CCC has a worse prognosis than cardiomyopathies of non-inflammatory etiology, like

ischemic or idiopathic dilated cardiomyopathy (DCM) [15]. Our group has shown that the

myocardial gene expression profiles in CCC patients are profoundly different from those of

both heart donors and DCM patients as assessed the “Cardiochip” cDNA microarray encoding

ca. 11,000 expressed sequence tags (EST) cDNAs expressed in cardiovascular tissue [16].

Indeed, 15% of all genes specifically upregulated in CCC myocardium were found to be IFN-

γ-inducible, indicating a strong IFN-γ transcriptional signature. This suggested that the

increased aggressiveness of CCC could be related at least in part to activation of IFN-γ-depen-

dent genes and pathways. Significantly, systemic overexpression of IFNγ in transgenic mice

causes a TNFα-dependent inflammatory dilated cardiomyopathy [17,18]. Likewise, immuno-

histological signs of inflammation in suspected myocarditis of postviral etiology is associated

with a poor prognosis [19], and sustained and long-term inflammation plays a role in worsen-

ing cardiac hypertrophy and chronic heart failure [20]. Mitochondrial dysfunction and oxida-

tive stress have been associated with the pathogenesis of dilated cardiomyopathy and heart

failure [21,22]. Indeed, our group has observed altered levels of 16S mitochondrial RNA as

well as mRNA encoding mitochondrial proteins [16] and reduced levels of mitochondrial

energy metabolism enzymes in that were specific to CCC [23]. Myocardial mitochondrial dys-

function and oxidative stress have been identified and explored in murine models of CCC

(Reviewed in [24]). However, the determinants of expression of the majority of differentially

expressed genes in CCC- as well as their roles in the key pathogenic roles of hypertrophy,

fibrosis, arrhythmia and myocarditis—still remained mostly unknown.

MicroRNAs (miRNAs), short non-coding RNAs (18 to 24 nucleotides), are post-transcrip-

tional regulators critically involved in a multitude of biological processes by modulating pro-

tein expression of up to 60% of the genes. miRNAs act by hybridizing with complementary

sequences the 3’untranslated region (UTR) of mRNAs, exerting a downregulatory effect

through direct degradation of the target mRNA and/or translational repression. MiRNAs also

play a key role in multiple disorders, including cardiovascular disease [25]. Modulation of

miRNA expression can profoundly alter disease phenotypes, and miRNA-based therapeutics

has already entered clinical trials [26]. Our group recently studied the mRNA and miRNA

transcriptome in the myocardium of mice acutely infected by T. cruzi [27], and we have previ-

ously shown that expression of muscle-enriched miRNAs ("myoMiRs", including miR-1 and

miR-133) is downmodulated in CCC myocardium, suggesting miRNA may control expression

of pathogenetically relevant genes in CCC [28]. We raised the hypothesis that mRNA expres-

sion and pathways/processes may to be heavily influenced by miRNA expression. To compre-

hensively address this issue, we performed an integrative genome-wide analysis of the role of

miRNA in global gene expression in CCC.

Methods

Ethics statement

The protocol was approved by the Institutional Review Board of the University of São Paulo,

School of Medicine and written informed consent was obtained from the patients. All experi-

mental methods comply with the Helsinki declaration.

Patients and sample collection

Human left ventricular free wall heart tissue was obtained from end-stage heart failure patients

at the moment of heart transplantation. Patients with CCC presented positive T. cruzi serology

and typical heart conduction abnormalities (right bundle branch block and/or left anterior

division hemiblock) and had a histopathological diagnosis of myocarditis, fibrosis and
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hypertrophy. Left ventricular free wall samples were also obtained from hearts of organ

donors, which were not used for transplantation due to size mismatch with available recipi-

ents. (n = 4) All left ventricular free wall heart tissue samples were cleared from pericardium

and fat and quickly frozen in liquid nitrogen and stored at −80˚C.

RNA Extraction and RT-PCR

Myocardium samples (20–30 mg) were crushed with ceramic beads (CK14, diameter 1.4 mm)

in 350 μl of RLT lysis buffer supplemented with 3.5 μl of β-mercapto-ethanol. Total RNA for

mRNA expression profilling was extracted with the RNeasy Mini Kit (Qiagen, Courtaboeuf,

France) adapted with Trizol. RNA quality and quantity was measured with a 2100 Bioanalyser.

Total RNA (1μg), with a RIN> 7, was reverse-transcribed with the high Capacity cDNA

Reverse Transcription Kit (ThermoFisher Scientific, Saint Aubin, France).

Whole human genome expression analysis

Whole genome expression analysis was done on SurePrint G3 Human GeneExpression v1

8x60K arrays (Agilent Technologies, Les Ulis, France) following the manufacturer’s protocol.

Gene expression data were previously deposited in the GEO database (GSE84796 and

GSE111544). Microarray analyses and signal normalization were done with GeneSpring soft-

ware (11.5.1), T test with adjustment for false discovery rate with the Benjamini-Hochberg

method. Genes were considered differentially expressed if adjusted P values were<0.05 and

absolute fold change >2.0. In order to validate the microarray results, quantitative real-time

PCR, from 20ng of cDNA, was performed with the ABI 7900HT thermocycler and TaqMan

Universal PCR Master Mix (Applied Biosystems, Life Technologies). The Student’s T test was

used to identify differentially expressed genes between CCC and controls by TaqMan RT-

qPCR. Gene expression data used in this manuscript are the same ones that used in one of pre-

vious work on methylation analysis.

Principal component analysis, network and pathways analysis

Principal component analysis (PCA) analysis was performed using all differentially expressed

genes and the variance expression of the number of standard deviations from mean overall

samples. Canonical pathways analysis, networks analysis and Upstream regulator analysis, and

classification of differentially genes belonging to pathways and biological processes were per-

formed with Ingenuity Pathway Analysis (IPA, Qiagen Redwood City, CA, USA). We also clas-

sified genes in additional relevant pathobiological processes and pathways such as

inflammation, IFNγ-modulated genes/Th1 response, extracellular matrix, fibrosis, hypertro-

phy, contractility of heart, hypertrophy, arrhythmia, oxidative stress/antioxidant response,

mitochondria, and mitochondria-related genes using IPA Knowledge Base (IKB) gene lists,

which were in some cases merged with other published gene lists. The IFNγ-dependent/Th1

response gene list was merged with published IFNγ-induced/repressed gene lists [29], and the

oxidative stress gene list was merged with Nrf2-modulated genes [30]. The NF-kB-modulated

gene list was obtained from Yang et al. [31]. The mitochondrial gene list was a combination of

all genes contained in the Mitochondrion Gene Ontology term and Mitocarta 2.0 [32]. Decon-

volution of immune and cardiac cell types was performed by comparing the differentially

expressed genes with the ARCHS4 tissue database in the EnrichR tool [33] (Adjusted P-

value < 0.001). The network of cell types representing the genes shared by different tissues was

constructed using the Cytoscape tool [34]. Prediction of differentially expressed miRNA-

mRNA target relationships was performed with the IPA Knowledge Base. We selected high

predicted or experimentally validated miRNA-target relationships.
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Quantitative miRNA expression profiling

RNA and cDNA were obtained from human myocardial samples as previously described [35].

MiRNA profiling experiments were done for 754 miRNAs using pre-printed TLDA microflui-

dic cards (Human MicroRNA Card Set v3.0), according to the manufacturer’s protocols and

as described [35]. Raw TLDA data files were pre-processed with threshold and baseline correc-

tions for each sample (automatic baseline and threshold set to 0.3) with assessment of each

amplification plot on SDS 2.3 software (ThermoFisher). Cycle threshold (Ct) values from

quantitative real time PCR data were imported, normalized and tested for statistical signifi-

cance with the HTqPCR Bioconductor package [36]. Samples data quality and outliers removal

were assessed with the arrayQualityMetrics Bioconductor package [37]. Distribution of the

samples Ct values were normalized against the endogenous control RNU48-001006. Differen-

tially expressed miRNAs (DEMs) were determined using a wrapper function from the Biocon-

ductor package LIMMA [38]. Variance filtering was applied and, for each miRNA, up to two

failed reads per group were accepted for partial coefficients calculation. Resulting p-values

were submitted to false discovery rate adjustment according to the Benjamini-Hochberg

method and the statistical significance threshold was defined as p-value� 0.05, with an abso-

lute fold change cutoff� 1.5.

miRNA target gene interaction analysis

miRNA-target gene interaction analysis was done with performed with Ingenuity Pathway

Analysis (IPA, Qiagen Redwood City, CA, USA). Analysis was done in three steps. First of all,

for each DEM, we extracted from IPA database all the reported target genes (high predicted or

experimentally observed). Then, among all these targets we kept only the ones that were differ-

entially expressed (DEGs) in our gene expression analysis. Finally, we kept only the targets pre-

senting an inverse pairing expression. In the analysis we included DEMs with an absolute fold

change over 1.5 and DEGs with an absolute fold change over 2.0.

Results

Information on the subjects studied in this paper is available in Table 1

We found 1535 genes to be differentially expressed (DEG) between CCC and control myo-

cardium, of which 1105 (72%) are upregulated, while 430 (28%) genes are downregulated in

CCC (S1 Table). To validate the microarray results, we performed qPCR of 44 differentially

expressed genes on the same samples (independent extractions) used for the microarray study,

plus 16 new CCC samples. The confirmation rate was 86%, and only for 6 genes (ABRA,

CDC42, ESRRA, GPD1, NFATC2, TGFBR2), the expression patterns were not confirmed. The

gene specific qRT-PCR results, including fold change and p values, were previously described

([39], S2 Table).

A PCA analysis based on the all differentially expressed genes (DEGs) showed clustering of

samples from each group in distinct areas of the plot (Fig 1A), confirming that CCC myocar-

dial gene expression patterns were substantially different from controls. A heatmap based on

DEGs confirmed the good clustering (S1A Fig). Likewise, differential clustering of CCC and

control miRNAs also confirmed miRNA expression patterns are distinct in CCC and controls

(Fig 1B). IPA canonical pathways analysis showed that the most enriched pathways are mainly

immune-related, such as Th1 and Th2 T cells, dendritic cells/antigen presentation, leukocyte

extravasation, NK and B cells; this is consistent with the high number of upregulated genes

from the incoming inflammatory cells present in CCC but not in control heart tissue (Fig 2A).

S2 Table depicts the DEGs belonging to all significant IPA canonical pathways. Fig 2B shows

the number of genes in each pathobiological process relevant for the disease such as

PLOS NEGLECTED TROPICAL DISEASES miRNAs and genes are key pathobiological processes in Chagas disease cardiomyopathy

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008889 December 22, 2020 5 / 20

https://doi.org/10.1371/journal.pntd.0008889


inflammation, IFNγ-modulated genes/Th1 response, extracellular matrix, fibrosis, contractility

of heart, hypertrophy, arrhythmia, oxidative stress/antioxidant response, and mitochondria-

related genes. The number of DEGs for each process is described on Fig 2B. S3 Table contains

the complete list of DEGs belonging to each pathobiological process. As expected, inflamma-

tion and IFNγ-dependent/Th1 response processes show the highest number of DEGs (361 and

148, respectively), followed by fibrosis (82) and hypertrophy (53). Of interest, we found a sig-

nificant number of DEGs belonging to mitochondria and oxidative stress functions/processes

(42 and 35, respectively). Some DEGs are shared by several biological functions/processes (S4

and S5 Tables). IFNγ-dependent DEGs were found in all other 8 processes, ranging from 9%

to 40% of genes in the other processes; those represented 104 inflammation, 33 fibrosis, 18

hypertrophy, 8 contractility and 7 mitochondrial genes.

Among these processes inflammation may be specific to CCC as shown in previous gene

expression studies [11,12]. For the other processes, they have been also described in dilated

Table 1. Characteristics of the human left ventricular free wall heart tissue samples used in this study.

Project Number Form EF Age Sex Transcriptome Analysis qRT-PCR validation MiRnome Analysis

EBS CCC 0.12 32 M x x x

NSR CCC 0.15 49 F x x

MGS CCC 0.20 61 F x

BHAN CCC 0.20 15 M x

SCS CCC 0.17 59 M x x x

ECA CCC 0.19 32 F x

VTL CCC 0.19 41 M x

APA CCC 0.20 60 F x x

MCRS CCC 0.20 45 F x x x

MERS CCC 0.20 39 F x

MSS CCC 0.20 46 F x

GMS CCC 0.20 58 M x

ISM CCC 0.20 39 M x

OMG CCC 0.21 49 M x

MAP CCC 0.23 50 F x x

EPG CCC 0.23 41 M x

JRJ CCC 0.23 51 M x

LRJ CCC 0.25 66 F x

HBO CCC 0.25 36 M x x x

PMG CCC 0.29 57 M x x x

ABG CCC 0.30 64 F x

ZMC CCC 0.36 54 F x x x

JAB CCC 0.55 41 M x

AAF2 CCC 0.64 60 M x x x

JMS CCC 0.66 50 M x

LAL CCC 0.29 39 M x x

EMBT control 25 M x x

LO control 46 M x x

ESS control 22 M x x x

ZFS control x M x x x

FJR control 28 M x x x

MBFM control 17 M x x x

3557 control x x

https://doi.org/10.1371/journal.pntd.0008889.t001

PLOS NEGLECTED TROPICAL DISEASES miRNAs and genes are key pathobiological processes in Chagas disease cardiomyopathy

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0008889 December 22, 2020 6 / 20

https://doi.org/10.1371/journal.pntd.0008889.t001
https://doi.org/10.1371/journal.pntd.0008889


cardiomyopathies of other etiologies. Upstream regulator analysis performed by IPA examines

how many targets of each given transcriptional regulator are present in the DEGs—as well as

the direction of change–based on the literature and IPA knowledge base; putative regulators

are ranked according to overlap with expected targets and directionality (z-score). It indicated

that IFNγ is the top upstream regulator, followed by other cytokines like TNFα, IL-18 and

EBI3/IL27Rβ chain, the chemokines CCL5 and CXCL10, the transcription factors NF-kB and

Ap1, and the PI3K enzyme (Table 2). S6 Table shows the 27 cytokines and chemokines upre-

gulated in CCC heart tissue. Significantly, the 7 most upregulated among them were chemo-

kines, including chemokine ligands of CCR5 (CCL5, CCL4) and CXCR3 CXCL9 and

CXCL10). Multiple cytokines and chemokines that were top upstream regulators like IFNγ,

CCL5, CXCL10, IL-18, IL-7, EBI3/IL-27b and IL-4 were found to be upregulated to different

degrees in CCC myocardium. Deconvolution of immune cell type profiles in CCC

Fig 1. Principal component analysis (PCA) plots. Principal component analysis (PCA) plot of samples was performed based (A) on 1535 differentially expressed

genes (DEGs) between CCC and controls. The two main principal components have the largest possible variance (68.8%). The 1535 DEGs had an equal contribution

to the first component (ranging from 6.0E-3% to 0.1%). For the second component, 25 DEGs had a contribution over 0.25% (GAB3, WBSCR27, LOC100130930,

C1orf35, ISLR2, SLC25A34, NOTCH2, TSPAN32, ATP1A1OS, C11orf65, ZNF214, APCDD1, C1QTNF6, RANBP17, MNS1, APBB3, ANGPTL1, BEND6, LTB,

MMP9, ITGB2, PIK3R1, NOTCH2NL, TRMT5 and XLOC_005730); (B) or on 80 differentially expressed miRNAs (DEMs) between CCC and controls. The two main

components explain 84.7% of the variance. For the first component, the 80 DEMS had an equal contribution (ranging from 0.24% to1.74%). For the second

component, even if all the DEMs contribute, six of the DEMs have a main contribution (hsa-miR-155: 12.8%; hsa-miR-146a: 9.0%; hsa-miR-302d: 8.8%; hsa-miR-378:

8.1%; hsa-miR-486: 7.0%; and hsa-miR-221: 5.2%).

https://doi.org/10.1371/journal.pntd.0008889.g001
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myocardium revealed an enrichment of gene expression signatures of CD4+ T cells, NK cells,

B cells/plasma cells, dendritic cells, plasmacytoid dendritic cells, regulatory T cells and granu-

locytes (red; Fig 3). This indicates that these cell types infiltrate the myocardium of CCC

patients. Conversely, genes down-regulated in CCC myocardium when compared to controls

were enriched with signatures of cardiac muscle cells (blue; Fig 3). This result is most likely a

consequence of reduced representation of cardiac mRNAs in CCC myocardium that was

replaced by inflammatory cells.

Fig 2. DEGs and DEM-targeted DEGs present in relevant canonical pathways and pathophysiological processes. The stacked bar chart displays the

number of DEG (blue) and DEM-targeted DEGs (red) present in each pathway. A. Ingenuity Pathway Analysis (IPA) canonical pathways representative of the

most significantly enriched in the heart of CCC patients. B. DEG and DEM-targeted DEGs in specific biological processes relevant for the CCC pathogenesis.

The numerical value in the parentheses in front of each pathway name represents the total number of genes in that pathway/process.

https://doi.org/10.1371/journal.pntd.0008889.g002
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Regarding microRNA analysis, it was performed on 8 CCC and 4 control myocardial sam-

ples contained in the mRNA transcriptome experiment (10 CCC and 7 control myocardial

samples). 754 human miRNAs were screened on the heart samples and among them, 210 miR-

NAs were detected in every sample; these were quantified in each tissue sample. S7 Table

shows the expression levels and statistical significance of the 210 expressed miRNAs. Based on

their expression values, we have found that 80 out of 210 miRNAs were differentially expressed

(DEMs) (absolute FC�1.5, p<0.05 without correction). A PCA analysis based on the all dif-

ferentially expressed miRNAs (Fig 1B) and a heatmap (S1B Fig) confirmed that miRNA pat-

terns were substantially different from controls. After correction for multiple testing, only

miR-146a-000468 (p = 6,9E-03) and miR-155-002623 (p = 6,9E-03) remain significantly

altered. However, the list of the 80 miRNAs obtained without correction for multiple testing

seems to be relevant as it contains miR-1 (p = 5,0E-03), miR-133a (p = 1,4E-02) and miR-133b

(p = 1.3E-2) that we previously observed as under-expressed in CCC samples as compared to

controls [28]. MiR-208a, which was also previously described to be under expressed in CCC

samples in the same study [28], is borderline in the present study (p = 5,5E-02).

As the controls were younger than CCC we performed some PCA analyses restricted on

CCC including DEG information (S2A Fig) or DEM information (S2B Fig) then we overlaid

the age of the patients. No obvious correlation was detected. We performed some spearman

correlation tests 9 DEGs were age correlated and none of the DEM were age correlated (S8

Table). So, the age may not act as a confounding factor. Similarlly, we did a PCA analysis on

cases and controls taking into account DEG information or DEM information and the sex of

the patients. No specific clustering was detected (S3A and S3B Fig). For each DEG and DEM

we made Student’s t tests between the male and female patients and no association were

detected.

In order to identify putative miRNA-target gene interactions among DEMs and DEGs, we

performed inverse expression pairing of DEMs (80) and DEGs (1535). A total of 571 miRNA-

Table 2. Upstream regulator analysis in CCC myocardium.

Upstream Regulator Molecule Activation z-score p-value of overlap

IFNG cytokine 7.891 2.38E-24

TNF cytokine 6.494 2.19E-12

IL18 cytokine 4.583 8.95E-14

NFkB (complex) complex 4.465 5.54E-06

CD40LG cytokine 4.287 4.10E-15

TCR complex 3.832 1.80E-26

BCR (complex) complex 3.771 1.27E-15

IL7 cytokine 3.466 6.32E-18

TET2 enzyme 3.357 4.04E-03

IL4 cytokine 3.082 7.43E-23

EBI3 (IL27Rβ chain IL27RB) cytokine 2.785 2.13E-05

Fcer1 complex 2.72 3.35E-05

CXCL10 cytokine 2.581 3.15E-04

Ap1 complex 2.454 5.70E-03

CCL5 cytokine 2.432 5.92E-03

U1 snRNP complex 2.384 1.24E-06

TNFSF14 (LIGHT) cytokine 2.224 9.77E-03

PI3K (complex) complex 2.007 3.62E-04

Collagen type I complex 2.000 3.96E-01

https://doi.org/10.1371/journal.pntd.0008889.t002
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mRNA interactions involving 67 DEMs and 396 DEGs were found by IPA. S9 Table depicts

all observed DEM-DEG interactions. Fig 2A shows the number of DEGs in the most impor-

tant canonical pathways and the fraction that is targeted by DEMs. The proportion of DEGs

targeted by DEMs in each depicted canonical pathway varies from 24% to 62%. A similar anal-

ysis done on DEM-DEG interactions in the 9 key pathobiological processes, which also indi-

cated that a substantial proportion of DEGs (16.7–40.8%) are targeted by DEMs. Apart from

the inflammation (38%) and IFNγ-induced genes (37.2%), pathobiological processes with the

highest number of DEM-targeted DEGs are fibrosis (40.2%), extracellular matrix (38.2%) and

hypertrophy (32.1%) processes (Fig 2B). S10 Table shows all DEM-DEG interactions classified

according to biological process. In order to validate the specificity of the DEM-DEG targeting,

we simulated the targeting of the DEGs with 80 miRNAs that were not differentially expressed

in CCC myocardium (non-DEMs) as compared to 80 DEMs using the IPA miRNA target filter

function, again focusing only high predicted and experimentally observed targets. Comparing

the number of target DEGs in the top 6 IPA canonical pathways that were shared by DEMs

and non-DEMs, we found a 50% higher number of DEG targets from DEM than DEG targets

of the simulated non-DEMs (p<0.00001, chi-square). This suggests that the pairing of DEG

targets with DEM was not random.

Fig 3. Enrichment analysis of cell subset and tissue signatures. Signatures of different tissues and cell types from ARCHS4 tissue database enriched with up-

regulated (red nodes) or down-regulated (blue nodes) genes compared to controls (Adjusted P-value< 0.001). The width of edges (connecting lines) is

proportional to the number of genes shared by two signatures. The size of nodes is proportional to the -log10 Adjusted P-value.

https://doi.org/10.1371/journal.pntd.0008889.g003
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We found that 5 miRNAs (hsa-miR-125b-5p, hsa-miR-15a-5p, hsa-miR-296-5p, hsa-miR-

29c-3p and hsa-miR-103a-3p) each regulate more than twenty DEGs; moreover, each of them

affects at least 6 of the 9 biological functions and processes analyzed (S11 Table). Moreover,

several of these “master” miRNAs targeted multiple genes belonging to a given process at the

same time, suggesting a synergistic action. A network built with DEM-DEG targets around the

important pathobiological processes, myocarditis, fibrosis, hypertrophy and arrhythmia dis-

closed a strong focus on fibrosis, and several miRNAs and targets participated in various pro-

cesses (summarized on Fig 4). We validated the expression of 38 genes belonging to the four

pathobiological processes with real time RTqPCR in a larger set of CCC samples.

Discussion

To assess the role of miRNAs in regulating gene expression in CCC myocardium, we per-

formed an integrative genome-wide analysis of miRNAs and mRNA expression in CCC myo-

cardium samples and performed network and pathways analysis. We identified 1535

differentially expressed genes (DEGs) and 80 differentially expressed miRNAs (DEMs). We

found that both miRNAs and mRNA expression profiles discriminated CCC from control

samples. Pathways analysis disclosed an enrichment in inflammation, Th1/IFN-γ-inducible

genes, genes belonging to fibrosis, hypertrophy, and mitochondrial/oxidative stress/antioxi-

dant response. Our results corroborated that IFN-γ is the key cytokine modulating transcrip-

tional changes in CCC myocardium and affecting all other studied pathobiological processes,

and cell type deconvolution indicated the presence of novel immune cell types that had not yet

been disclosed by immunohistochemistry. Our data also suggest that a significant number of

differentially expressed microRNAs target differentially expressed genes; moreover, a few

microRNAs may potentially regulate simultaneously multiple genes in key pathways and

pathogenetically relevant processes. Our paper is the first to indicate that miRNAs may play a

role in promoting major transcriptome changes in human inflammatory cardiomyopathy.

Our results pointed out IFN-γ is the top gene expression regulator with ca. 10% of DEGs

being modulatable by it, in all pathobiological processes. Indeed, several studies have shown a

negative impact of IFN-γ on the myocardium, leading to reduced contractility, release of che-

mokines and increased production of atrial natriuretic factor [40–42]. IFN-γ-induced cardiac

fibrosis with increased fibroblast proliferation, production of hyaluronan and metalloprotei-

nases 2 and 9 has also been demonstrated [43–46]. The role of IFN-γ, TNF-α and NF-kB as

top upregulators are also in line with data in genetically modified murine models. Mice trans-

genic to IFN-γ developed a TNF-α-dependent inflammatory dilated cardiomyopathy with

fibrosis and heart failure [18], and a very similar phenotype was developed by mice constitu-

tively expressing active IKK2 [47]. Mechanistically, IFN-γ induces TNF-α and potentiates

TNF-α-mediated NF-kB signaling and upregulation of NOS2 [48,49], leading to cardiomyo-

cyte contractile dysfunction and apoptosis [Sun, 1998 #110]. This is mediated at least in part

by NADPH-and NOS2-dependent production of reactive oxygen and nitrogen species (ROS

and RNS, respectively), with oxidative and nitrosative stress [40,50]. IFN-γ -induced RNS

leads to inhibition of mitochondrial oxidative metabolism [51] and ATP depletion in cardio-

myocytes [52] with ensuing mitochondrial dysfunction. Of interest, 169 DEGs, or ca 10% of

DEGS are potentially modulated by NF-kB in CCC myocardium. Our data point towards IFN-

γ and NF-kB-mediated signaling as a major player in Chagas cardiomyopathy; we believe they

may have a central role in orchestrating the molecular processes that contribute to heart fail-

ure. It is noteworthy that IFN-γ may also act through modulation of miRNA expression in

CCC myocardium. IFN-γ down-regulates 5 miRNAs (27b, 92a, 99a, 99b, 101) [53,54] which

found to be downregulated DEMs in CCC myocardium.
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Previous immunohistochemistry studies on CCC heart tissue haves identified a few cell

types in the inflammatory infiltrate. Most cells were CD68+ macropages, CD4 and CD8+ T

cells, with fewer B cells, NK cells, and TGF-beta-expressing cells [7,8,10]. In addition to these

cell types, the deconvolution of immune cell type transcriptional profiles shown here provided

evidence for the presence of plasmacytoid dentritic cells, regulatory cells, plasma cells and

granulocytes. Many of the genes in the NK signature are shared with CD8+ cytotoxic T cells

which are abundant in CCC heart tissue [8]; this has previously been observed in transcrip-

tome profiling of peripheral blood from CCC patients [27], and we believe our finding in

Fig 4. DEM-DEG network related to the main Chagas disease pathobiological features. Networks with DEMs and DEGs related to myocarditis, fibrosis,

arrhythmia and hypertrophy were built using IPA software. Each built network contains molecules represented as nodes, and the biological relationship between

two nodes is represented as an edge (line). All edges (connecting lines) are interactions supported by at least one reference from the literature or from canonical

information stored in the IPA Ingenuity Knowledge Base (IKB). Full lines are direct interactions, dotted lines are indirect interactions. Upregulated microRNAs

and mRNAs are colored in hues of red, and downregulated molecules are colored in hues of green according to the intensity of expression. Each node shape

represents one type of molecule.

https://doi.org/10.1371/journal.pntd.0008889.g004
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myocardium represents an NK/CD8+ T cell cytotoxicity signature. Regarding regulatory T

cells, we had previously found a low expression of CTLA-4 mRNA in CCC heart tissue, sug-

gesting a small component of CTLA-4+ T regs [12].

A significant proportion of the DEGs in the pathways and processes we studied (15–62%)

were targeted by differentially expressed miRNA (DEM). We found that some DEMs had

unusually high numbers of target DEGs. Five downmodulated DEMs (hsa-miR-15a-5p, hsa-

miR-29c-3p, hsa-miR-103a-3p, hsa-miR-125b-5p and hsa-miR-296-5p) each targeted at least

20 DEGs involved in 6 or more studied pathobiological processes. Their functions in the con-

text of heart disease and inflammation are described below. Downmodulated miR-15a may

targets 23 upregulated DEGs involved in 5 out of the 8 processes described above. Previous

data indicate that the miR-15 family is involved in TGFβ-pathway inhibition [55] while miR-

15 antagonists induce fibrosis and hypertrophy [56], which are important features of Chagas

disease. Our study also revealed down regulation of hsa-miR-29c-3p, associated with 21 upre-

gulated target DEGs involved in all processes described above. The miR-29 family members

target several genes related to extracellular matrix and fibrosis [57–59], and miR29b was

shown to be inhibited by the myocardial infarction associated transcript (MIAT) [29], a long

non-coding RNA overexpressed in CCC patients’ myocardium [60].

Downmodulated miR-103 targets 20 upregulated DEGs, involved in 6 out of the 8 processes

previously described. MiR-103 is overexpressed in the myocardium of heart failure patients

[61], and attenuates cardiomyocyte hypertrophy by a mechanism that partially relies on reduc-

ing cardiac autophagy [62]. Down modulated miR-125b targets 23 upregulated DEGs in 6 out

of the 8 processes described above. The miR-125 family members negatively regulate the

expression of TNF-α, reducing ischemia/reperfusion damage [63] also reducing chemokine

RANTES (CCL5), which is highly expressed in our CCC samples. Lastly, down modulated

miR-296 targets 22 upregulated DEGs. MiR-296 is linked to fibrosis, and is similarly downre-

gulated in hypertensive patients [64].

Only two miRNAs (miR-155-5p and miR-146a-5p) were found to be upregulated in CCC

patients. miR-155 has been shown to increase the global Nrf2 transcriptional response by tar-

geting translation of the transcriptional regulator BACH1 [65], indicating that this miRNA

may have an impact on oxidative stress in CCC hearts and its upregulation may have occurred

as a compensatory mechanism to intense oxidative stress. This hypothesis will require biologi-

cal validations. The Nrf2 pathway and HMOX1 have been reported to play a role in "tissue tol-

erance"—the ability of resist pathogen, inflammation, or oxidative stress-mediated damage

during infection or inflammation [66,67] and we have found that HMOX2, a homologous

Nrf2-induced gene involved in the antioxidant response, is down regulated in CCC myocar-

dium. miR-146a is expressed in multiple cardiac cell types [68] and was found to be increased

upon induction of cardiotoxicity and to inhibit proteins involved in heart regeneration (ErbB-

2 and -4) [69,70], suggesting that overexpression of this miRNA may have a negative impact

on cardiac function. On the other hand, miR-146a was shown to be induced by NF-κB and to

create an anti-inflammatory feedback loop by inhibiting NF-κB-induced proinflammatory

cytokine production and inflammatory cell migration into the myocardium [71,72] promoting

Treg suppressor function [73], suggesting that this miRNA also presents cardioprotective

effects. However, we have shown here and elsewhere [11,12] that Th1 inflammatory cytokines

and chemokines are highly expressed in CCC heart tissue and very few Treg are detectable in

CCC myocardium [10–12]. Like miR-155, it is possible that it is upregulated as a failed attempt

to modulate inflammation.

Our study was performed in whole heart tissue, containing several cell types, including car-

diomyocytes, fibroblasts, endothelial and infiltrating inflammatory cells. We must thus keep in

mind that results reflect the composite of mRNA and microRNA content of each cell type with
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its respective contribution. Most of the RNA will come from cardiomyocytes, but inflamma-

tory cell RNA will readily show up, since control tissue is free from inflammatory infiltrates,

showing at most passenger leukocytes that are much less numerous. At any event, our results

suggest that, by targeting multiple genes in relevant pathogenic disease pathways and pro-

cesses, miRNAs can exert a combined regulatory effect that may be stronger than the effect of

a single DEM-DEG interaction. In addition, we found a small number of key "high-ranking"

differentially expressed miRNAs—those with the highest number of targets, overlapping with

those with multiple targets involved in several pathological processes. Our data identified spe-

cific molecular features in key pathogenic processes. Further investigation and validation of

the more important miRNA-mRNA interactions involved in fibrosis, oxidative stress, and

mitochondrial processes may reveal important insights into the pathogenesis of CCC and may

translate in the identification of novel therapeutic targets. Our findings may have a bearing on

myocarditis and inflammatory cardiomyopathy of distinct etiologies as well as to IFN-γ medi-

ated age-related myocardial inflammation and functional decline [74] as recently described.
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S1 Fig. Unsupervised hierarchical clustering done on patients with severe chronic Chagas

disease cardiomyopathy (CCC) and controls. A. Unsupervised hierarchical clustering based

on the 1535 DEGs. B. Unsupervised hierarchical clustering based on the 80 DEMs.

(TIF)

S2 Fig. Principal component analysis (PCA) plots taking into account the age of the cases.

Principal component analysis (PCA) plot of samples was performed based A. on 1535 differen-

tially expressed genes (DEGs) between CCC and controls. B. on 80 differentially expressed

miRNAs (DEMs) between CCC and controls. Each plot was generated only on cases and the

age of of the patients was overlaid.

(TIF)

S3 Fig. Principal component analysis (PCA) plots taking into account the sex of the cases

and controls. Principal component analysis (PCA) plot of samples was performed based A. on

1535 differentially expressed genes (DEGs) between CCC and controls. B. on 80 differentially

expressed miRNAs (DEMs) between CCC and controls. On each plot cases and controls are

indicated according to their sex.

(TIF)
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