Skip to Main content Skip to Navigation
Book sections

Quantitative Analysis of Renal Perfusion by Arterial Spin Labeling

Abstract : The signal intensity differences measured by an arterial-spin-labelling (ASL) magnetic resonance imaging (MRI) experiment are proportional to the local perfusion, which can be quantified with kinetic modeling. Here we present a step-by-step tutorial for the data post-processing needed to calculate an ASL perfusion map. The process of developing an analysis software is described with the essential program code, which involves nonlinear fitting a tracer kinetic model to the ASL data. Key parameters for the quantification are the arterial transit time (ATT), which is the time the labeled blood takes to flow from the labeling area to the tissue, and the tissue T1. As ATT varies with vasculature, physiology, anesthesia and pathology, it is recommended to measure it using multiple delay times. The tutorial explains how to analyze ASL data with multiple delay times and a T1 map for quantification. This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This analysis protocol chapter is complemented by two separate chapters describing the basic concept and experimental procedure.
Document type :
Book sections
Complete list of metadata
Contributor : Frank Kober Connect in order to contact the contributor
Submitted on : Wednesday, September 8, 2021 - 9:57:46 AM
Last modification on : Tuesday, October 19, 2021 - 10:50:18 PM


Publisher files allowed on an open archive


Distributed under a Creative Commons Attribution 4.0 International License




Kai-Hsiang Chuang, F. Kober, Min-Chi Ku. Quantitative Analysis of Renal Perfusion by Arterial Spin Labeling. Preclinical MRI of the kidney, pp.655-666, 2021, ⟨10.1007/978-1-0716-0978-1_39⟩. ⟨hal-03122960⟩



Record views


Files downloads