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Abstract

Individual magnetic wax spheres with specific gravities of 1.006, 1.054 and 1.152 were re-

leased from rest on a smooth wall in water at friction Reynolds numbers, Reτ = 680 and 1320

(sphere diameters d+ = 58 and 122 viscous units, respectively). Three-dimensional tracking

was conducted to understand the effects of turbulence and wall friction on sphere motions.

Spheres subjected to sufficient mean shear initially lifted off of the wall before descending

back towards it. These lifting spheres translated with the fluid above the wall, undergoing

saltation or resuspension, with minimal rotations about any axis. By contrast, spheres that

did not lift off upon release mainly slid along the wall. These denser spheres lagged the fluid

more significantly due to greater wall friction. As they slid downstream, they began to roll

forward after which small repeated lift-off events occurred. These spheres also rotated about

both the streamwise and wall-normal axes. In all cases, the sphere trajectories were limited

to the buffer and logarithmic regions, and all wall collisions were completely inelastic. In the

plane parallel to the wall, the spheres migrated in the spanwise direction about 12% of the

streamwise distance traveled suggesting that spanwise forces are important. Variations in

sphere kinematics in individual runs were likely induced by high and low momentum zones

in the boundary layer, vortex shedding in the sphere wakes, and wall friction. The repeated

lift-offs of the forward rolling denser spheres were attributed to a Magnus lift.
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1. Introduction

Particle-laden turbulent flows occur in many applications ranging from industrial pro-

cesses to the environment such as the pollutant particles in atmosphere, rivers and oceans

(e.g., Olsen et al., 1982; Law and Thompson, 2014; Castañeda et al., 2014). In a wall-

bounded flow, the particle motion is complicated by interactions with both multiple scales

in the turbulent flow and the wall itself. The presence of coherent structures such as the

alternating high and low momentum regions associated with ejection and sweep events in

the near-wall regions (Wallace et al., 1972) can induce complex particle-turbulence interac-

tions. When a particle is larger than the smallest fluid eddies, it can experience variations in

shear and normal forces around its circumference. Additionally, wall friction and restitution

can affect both the translation and rotation of the particles. Depending on the surrounding

conditions, particles can either collide with or lift off from the wall or slide or roll along

it. All these effects can significantly impact particle resuspension, deposition and transport

which are all very crucial in modeling the particle response in real applications.

Various early experiments examined particle dynamics in turbulent open-channel flows.

Among others, Sutherland (1967) investigated how grains in a sediment bed were brought

into motion by the fluid. He proposed an entrainment hypothesis whereby strong turbu-

lent eddies could disrupt the viscous sublayer and lift the grain off of the bed. Francis

(1973) and Abbott and Francis (1977) observed rolling, saltation and suspension behavior

of heavy grains transported over a planar rough bed. Meanwhile, Sumer and Oğuz (1978)

and Sumer and Deigaard (1981) observed that a sand-coated wax sphere with diameter

of approximately 30 viscous units (d+) propagated upwards and downwards repetitively

throughout its trajectory in both rough and smooth beds. Hereafter, the symbol + is used

to denote quantities normalized by the friction velocity (uτ ) and the kinematic viscosity (ν)

of water at 20◦C.

To better understand particle-turbulence interactions in wall-bounded flows, direct visu-

alization techniques were incorporated in investigations by Rashidi et al. (1990), Kaftori et al.
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(1995a,b), Niño and Garćıa (1996), van Hout (2013) and Ebrahimian et al. (2019) to name

a few. These studies concluded that particle resuspension and deposition events in the near-

wall regions were strongly influenced by coherent flow structures. Specifically, van Hout

(2013) reported that in his time-resolved particle image velocimetry (PIV) and particle

tracking velocimetry (PTV) experiments, all lift-off events of polystyrene beads (d+ = 10)

at friction Reynolds number, Reτ = 435 were due to ejection events generated by passing

vortex cores and positive shear. Once lifted beyond the viscous sublayer, the particles either

stayed suspended in the fluid or saltated along the wall depending on the type of coher-

ent structures that they encountered. Ebrahimian et al. (2019), who studied glass beads

(d+ = 6.8) in channel flow with Reτ = 410, found the strongest bead accelerations were

correlated with fluid ejections and occurred at a wall-normal location of y+ = 30. Sweep

motions contributed to streamwise decelerations of beads closer to the wall (y+ < 20). In

addition, Rashidi et al. (1990) and Kaftori et al. (1995a,b), who investigated spanwise mo-

tions in dilute particle suspensions in turbulent boundary layers, concluded that the small

particles tended to accumulate in the low-speed zones where ejection events were prominent.

A key factor in particle saltation and resuspension is the lift force acting on a particle.

Sphere lift can result from mean shear (Saffman, 1965), individual vortices (Auton, 1987),

or turbulence (Sutherland, 1967) in the fluid, from solid body rotation (Magnus, 1853)

or a combination of both (see reviews by Loth, 2008 and Shi and Rzehak, 2019). When

a sphere is close to a wall, the surrounding flow field is distinctly different from that in

an unbounded flow. Hall (1988) and Mollinger and Nieuwstadt (1996), who measured the

fluid-induced forces acting on a particle fixed to the wall in a turbulent boundary layer

using force transducers, reported strong positive mean force in the wall-normal direction.

Hall’s (1988) experimental data showed that, for 3.6 < d+ < 140 and particle Reynolds

number, 6.5 < Rep < 1250, the normalized mean force could be approximated by F+
y =

(20.90 ± 1.57)(d+/2)2.31±0.02. On the other hand, Zeng et al.’s (2008) fully-resolved direct

numerical simulation (DNS) of the flow over a fixed sphere located a distance above the

wall showed the opposite. The mean wall-normal forces, evaluated by integrating the non-

dimensional pressure and viscous stress around the sphere surfaces, were negative for all
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spheres with 3.56 ≤ d+ ≤ 24.94 centered at a wall-normal location of y+ = 17.81 at Reτ =

178.12. Tomographic PIV performed by van Hout et al. (2018) also suggested a negative

wall-normal contribution on a tethered sphere with d+ = 50 centered at y+ = 43 above the

wall at Reτ = 352 due to the sphere wake tilting away from the wall. These results imply

that the net wall-normal force including the lift force can vary significantly depending on

the gap between sphere and wall.

While the presence of a wall can affect the lift force acting on a non-rotating parti-

cle considerably, it can also cause the sphere to roll due to frictional torque. In addition,

the hydrodynamic torque generated by strong velocity gradients, vorticity and turbulent

fluctuations can also cause the sphere to rotate (e.g., Saffman, 1965; Cherukat et al., 1999;

Bagchi and Balachandar, 2002; Bluemink et al., 2008). In turbulent boundary layer flows,

White and Schulz (1977) and Niño and Garćıa (1994), among others, evaluated the signif-

icance of Magnus lift on saltating particles based on comparisons between theoretical and

experimental particle trajectories. They concluded that Magnus lift could be a non-negligible

part of the overall particle lift force. However, rotation was not quantified in either study.

In many previous numerical simulations of wall-bounded flows, particles were mod-

eled as point-masses with no volume and thus no rotation (e.g., Pedinotti et al., 1992;

Dorgan and Loth, 2004; Soldati and Marchioli, 2009). Particle-resolved simulations are rel-

atively limited due to the high computational cost and challenges in getting fine resolution

(Balachandar and Eaton, 2010). In most of the particle-laden wall-bounded flow simula-

tions, even though finite-size effects were taken into account, effects due to particle rotation

were neither considered nor discussed explicitly (e.g., Pan and Banerjee, 1997; Zeng et al.,

2008; Fornari et al., 2016). Several studies including those from Zhao and Andersson (2011),

Ardekani and Brandt (2019) and Peng et al. (2019), reported that particle rotation can in-

duce significant effects on the turbulence modulation and should not be neglected.

Several experimental techniques have been proposed to measure sphere translation and

rotation simultaneously. For example, Zimmermann et al. (2011) and Mathai et al. (2016)

extracted the sphere position and absolute orientation by comparing the sphere images

with unique patterns captured from two perpendicular cameras to a database of synthetic

http://creativecommons.org/licenses/by-nc-nd/4.0/
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projections. Meanwhile, Klein et al. (2013) and Barros et al. (2018) tracked the markers

embedded within or painted over the surface of a sphere using multiple cameras. Then, the

angular velocity was computed based on the optimal rotation matrix that best aligned the

tracked markers (Kabsch, 1976, 1978).

As presented above, in a particle-laden wall-bounded turbulent flow, the particle-turbule-

nce and particle-wall interactions are complicated to resolve. In the context of particle

motion, most attention has been devoted to the two-dimensional translational behavior

of particles over short streamwise distances, with little attention to rotation. In order to

comprehend the particle dynamics more fully, we track individual spheres over significant

streamwise distances while resolving all components of translation and rotation. Multiple

sphere densities and flow Reynolds numbers are considered to study the effects of specific

gravity and mean shear on sphere motions. Barros et al.’s (2018) methodology is adapted to

the requirements of the current experimental setup to reconstruct both the sphere position

and orientation. The paper is organized as follows: Section 2 describes the experimental

setup, parameters, reconstruction of particle motion and uncertainty analysis; in Section 3,

we present the results on sphere translational and rotational kinematics, and discuss how

they are affected by both turbulence and the bounding surface; the concluding remarks are

summarized in Section 4.

2. Methodology

2.1. Experimental Setup

The experiments were conducted in a recirculating water channel facility at the University

of Minnesota. The channel test section, which is constructed of glass, is 8 m long and 1.12 m

wide. A 3 mm cylindrical trip-wire was located at the entrance of the test section to trigger

the development of a turbulent boundary layer along the bottom wall. Further details on the

facility can be found in Gao (2011). Hereafter x, y and z define the streamwise, wall-normal,

and spanwise directions, respectively.

To achieve a repeatable and controllable initial condition, magnetic spheres, with diame-

ter (d) of 6.35±0.05 mm, molded from a mixture of blue machinable wax (913.7 kg m-3) and

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1: Experimental setup. (a) Top view: two pairs of high-speed cameras (S1 and S2) aligned in stereoscopic

configurations for capturing the trajectory and rotation of a marked sphere over a long field of view. Inset:

example of sphere captured in grayscale with diameter, d spanning 43 pixels or 6.35 mm. (b) Side view:

sphere on smooth glass wall in a turbulent boundary layer. Red boxes illustrate the mechanism used in

holding (solenoid ON) and releasing (solenoid OFF) the sphere, respectively.

synthetic black iron oxide (5170 kg m-3) were used. Here, a small piece of wax was melted

inside two hemisphere molds and different amounts of iron oxide particles were added to

control the sphere density. Then, the two molds were brought together and chilled immedi-

ately to solidify the liquid wax. The resulting spheres were black and opaque. Small markers

were painted at arbitrary locations all over the sphere surface using a white oil-based pen for

good image contrast (see Fig. 1a). Both the mean inter-marker spacing and mean marker

diameter were approximately 0.6 mm.

For each run, a given sphere was held statically on the smooth glass wall in the boundary

layer by a magnet at a location 4.2 m downstream of the trip wire and 0.3 m (approximately

4 boundary layer thicknesses, δ) away from the nearest sidewall based on the sphere centroid.

This location will be considered as the origin in x and z, with the bottom wall as y = 0.

A DC 12V 2A push-pull type solenoid from Uxcell was used to hold the cubic neodymium

magnet (N40) and the sphere in position. When activated, the solenoid held the plunger such

http://creativecommons.org/licenses/by-nc-nd/4.0/
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that the magnet which was connected through a slider will be flush with the outer channel

wall. By switching off the power supply, both the plunger and the magnet were retracted

with the help of gravity (see Fig. 1b). As the magnet moved away from the bottom wall, the

sphere was released, allowing it to propagate with the incoming flow. A coarse screen was

located at the end of the test section to capture the sphere and prevent it from recirculating

around the channel.

Two pairs of Phantom v210 high-speed cameras from Vision Research Inc. were ar-

ranged in stereoscopic configurations to track the sphere in three-dimensional (3D) space

over a relatively long field of view. The angle between the two stereoscopic cameras was set

to approximately 30◦ for both camera pairs. The cameras were positioned with a stream-

wise overlapping distance of approximately two particle diameters in between their fields

of view. All cameras were fitted with 105 mm Nikon Micro-Nikkor lenses with aperture

f/16. Scheimpflug mounts were added to all cameras so that the images were uniformly

focused across the fields of view. Three white LED panels positioned above the cameras

illuminated the domain considered. Prior to running the experiments, the optical system

was calibrated by displacing a two-level plate (LaVision Type 22) across nine planes in the

spanwise direction for both camera pairs. A third order polynomial fit was obtained for each

plane from both cameras pairs using the calibration routine of Davis 8.4 (LaVision GmbH)

to generate the mapping function of the volumetric calibration respectively. The root mean

square (r.m.s.) error of the grid point positions was between 0.05 and 0.1 pixels indicating

an optimal fit. Image sequences were captured at a sampling frequency of 480 Hz with image

resolution of 1280 by 800 pixels, pixel depth of 12-bit, and camera pixel size of 20 µm.

2.2. Experimental Parameters

To understand the effect of turbulence, the experiments were conducted at two flow

Reynolds numbers. Here, the mean flow statistics of the unperturbed turbulent boundary

layers at the initial sphere location were determined from planar PIV measurements in

streamwise wall-normal planes. A New Wave Solo II Nd:YAG 532 nm double-pulsed laser

system with pulse energy of 30 mJ was used for illumination. The laser sheet illuminated

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Table 1: Summary of turbulent boundary layer properties.

U∞ [m s-1] uτ [m s-1] δ [mm] Reτ Reθm

0.215 0.0092± 0.0001 73± 2 680± 20 1870± 20

0.488 0.0193± 0.0002 69± 2 1320± 40 3890± 40

through the bottom glass wall had a thickness of 1 mm. The flow was seeded with silver-

coated hollow glass spheres from Potters Industries LLC with an average diameter and

density of 13 µm and 1600 kg m-3, respectively. At both flow Reynolds numbers, 2000

image pairs were acquired using a TSI Powerview Plus 4MP 16-bit PIV camera with camera

pixel size of 7.4 µm. The image pairs were captured at a sampling frequency of 1.81 Hz with

image resolution of 2048 by 2048 pixels.

The PIV images were processed using Davis 7.4 (LaVision GmbH) to obtain the velocity

vectors. Normalized cross-correlation (Fincham and Spedding, 1997) with an overlap of

50% over initial interrogation window sizes of 64 by 64 pixels followed by three passes of

32 by 32 pixels were employed. All vectors were post-processed with the universal outlier

detection criterion (Westerweel and Scarano, 2005) to remove spurious vectors. By applying

the Clauser chart method using log-law constant B = 5 and von Kármán constant κ = 0.41,

uτ were estimated to be 0.0092 and 0.0193 m s-1 (Clauser, 1956; Monty et al., 2009). At a

water depth of 0.394 m under both fluid conditions, the free-stream velocities (U∞) were

0.215 and 0.488 m s-1, with δ of 73 and 69 mm estimated based on the mean unperturbed

streamwise fluid velocity location of U(δ) = 0.99U∞. This corresponded to friction and

momentum thickness Reynolds numbers of Reτ = uτδ/ν = 680 and 1320 and Reθm =

U∞θm/ν = 1870 and 3890, respectively where θm is the momentum thickness. The spatial

resolutions of the computed velocity vectors were 14 and 29 viscous units at Reτ of 680 and

1320, equivalent to 1.51 mm. The boundary layer properties are summarized in Table 1

while the mean flow statistics are plotted in Fig. 2. The PIV streamwise velocity statistics

showed good agreement with the DNS results of Jiménez et al. (2010).

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 2: Statistics of the unperturbed turbulent boundary layers. (a) Mean streamwise fluid velocity and (b)

r.m.s. of streamwise velocity fluctuations. Lines: DNS profiles from Jiménez et al. (2010). Symbols: PIV

data. Blue: Reτ = 680; Red: Reτ = 1320. Error bars in (b) indicate the measurement uncertainties.

Spheres with d = 6.35± 0.05 mm and specific gravities (ρp/ρf ) of 1.006 (P1), 1.054 (P2)

and 1.152 (P3) were considered, where ρp is the sphere density and ρf is the fluid density.

This corresponds to d+ = duτ/ν of 58 and 122 viscous units, which are comparable to 26

and 46 times the Kolmogorov length scale (η) in the logarithmic region (Pope, 2000). For

each sphere, the density was determined based on the settling velocity (Vs) measured from

high-speed imaging of the sphere falling in a quiescent fluid where ρp = 3CDρfV
2
s /4dg+ ρf .

Here, CD refers to the drag coefficient obtained from the standard drag curve (Clift et al.,

1978) while g is the gravitational acceleration. For all spheres, the uncertainty in density was

less than 1%. Meanwhile, the initial particle Reynolds numbers defined as Rep = Ureld/ν

were 760 and 1840, where Urel = 0.122 and 0.292 m s-1 are the relative velocity between

particle and mean fluid at the particle center upon release. In our cases, Stokes numbers

(Skη), expressed as the ratio of the particle’s response time, τp = (ρf+2ρp)d
2/36νρf (Crowe,

2005) to the characteristic flow time scale based on Kolmogorov, τη (Pope, 2000), ranged

from 59 to 193. Note that although |Vs|/U∞ is relatively small for sphere P1, it is very

significant for P2 and P3. Details of the experimental parameters are summarized in Table

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Table 2: Summary of experimental parameters. Fy

∗

= (Fy − Fb)/Fb where Fy and Fb denote the mean

wall-normal fluid-induced force based on Hall’s (1988) expression and the net buoyancy force, respectively.

Reτ
U(y = d

2
)

Initial Rep d+ Sphere ρp/ρf Skη |Vs|/U∞ Initial Fy
∗

[m s-1]

680 0.122 760 58± 2 P1 1.006± 0.003 59 0.081 12± 2

P2 1.054± 0.006 60 0.43 −0.20± 0.12

P3 1.152± 0.015 64 0.74 −0.74± 0.04

1320 0.292 1840 122± 5 P1 1.006± 0.003 176 0.036 72± 12

P2 1.054± 0.006 181 0.19 3.4± 0.7

P3 1.152± 0.015 193 0.33 0.45± 0.24

2. The particles were tracked over a streamwise distance up to x ≈ 5.5δ. For each case

considered, R = 10 trajectories were captured using the same sphere. For spheres P1 and

P3, an additional 55 and 65 runs respectively were completed at both Reτ to track the initial

sphere lift-off behavior.

2.3. Reconstruction of Particle Translation and Rotation

Before computing the particle translation and rotation, the grayscale images were first

pre-processed using Matlab to isolate the sphere from the background. A standard circular

Hough Transform routine was applied to locate the sphere. Next, the background surround-

ing the sphere was removed by setting the intensity values to 0 (black). The extracted sphere

images were then imported to Davis 8.4. Here, the images were further processed with 3 x

3 Gaussian smoothing and sharpening filters to increase the dot contrast. Pixel intensity

values that were less than those of the white dots were set to 0 to isolate the dots from the

sphere image. In all images, the minimum digital dot size was approximately 2 x 2 pixels.

Subsequently, a 3D-PTV routine based on the volumetric calibration mapping function was

implemented to reconstruct the dot coordinates from both camera pairs.

The data sets obtained from the PTV were composed of the 3D coordinates of true and

http://creativecommons.org/licenses/by-nc-nd/4.0/
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ghost markers and their corresponding 3D velocity vectors. Hence, the filtering methodology

proposed by Barros et al. (2018) was employed to remove the ghost tracks. Once the true

markers had been determined, the sphere centroid was determined by applying the equation

of a sphere. Then, a rotation matrix that best aligned the markers of consecutive images was

obtained by applying Kabsch’s (1976) algorithm. In all runs, at least 8 markers were retained

when computing the sphere centroid locations and rotation matrix. Even though all spheres

were captured at 480 Hz, different processing frequencies were used in tracking. Depending

on the sphere translation speed, the processing frequency was optimized to ensure that

marker displacement between images was larger than the disparity uncertainty (see Section

2.4) while limiting maximum sphere streamwise displacement to less than 10 pixels to avoid

false marker pairing. More details of the reconstruction process can be found in Barros et al.

(2018).

2.4. Uncertainty Analysis

For the PIV measurements, the random errors of the mean velocity vector in both cases,

computed based on a 95% confidence interval, were less than 0.2% of the local mean velocity.

For the r.m.s. of the streamwise velocity fluctuations (urms), the corresponding maximum

statistical uncertainty estimated based on chi-square analysis with a 95% confidence interval

was 3% (see the errorbars plotted in Fig. 2b). The accuracy of δ is limited by the PIV

vector spatial resolution and this gives an uncertainty of up to 3% from the estimated

value. Meanwhile, the uncertainty of uτ evaluated based on fitting the logarithm law of

the wall equation between y+ > 30 and y/δ < 0.2 was approximately 1%. These resulted

in an uncertainty of 3% in the Reτ calculation. Next, the uncertainty of Reθm , which was

estimated based on the statistical error of the mean velocity data, was around 1%.

For the marker reconstruction, the mean disparity error, ǫ∗disp calculated by projecting

the 3D reconstructed markers back to the camera image in Davis 8.4, was approximately 0.8

px. This gives an estimate of the uncertainty in the marker locations due to reconstruction

errors (Wieneke, 2008). To reduce the noise in computing derivatives, the raw position and

orientation data were smoothed by a quintic spline (Epps et al., 2010). The mean uncertain-

http://creativecommons.org/licenses/by-nc-nd/4.0/
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ties of the sphere position (x, y and z) as well as orientation (θx, θy and θz) were computed

based on the r.m.s. between the raw and smoothed data (Schneiders and Sciacchitano, 2017).

For sphere position, the uncertainties were 0.51, 0.18 and 0.95 px; for orientation, the val-

ues were 1.2, 1.5 and 0.52 px, respectively. These correspond to mean translational and

angular displacement uncertainties of 0.01d and 1.5◦. Lastly, the mean uncertainties of the

translational sphere velocities (Up, Vp and Wp) were estimated to be 2%, 1% and 4% of the

respective U∞.

3. Results and Discussion

3.1. Sphere Translation

3.1.1. Sphere Trajectories

Figure 3 shows the sphere wall-normal (y) trajectories plotted against their streamwise

distance traveled. In this section, for visual clarity, only results from four out of ten runs

(R = 4/10) are plotted for each case, unless otherwise specified. For results from all ten

runs, refer to Tee et al. (2019). The upward force required to lift a particle off and away

from the wall, which must derive from net pressure and viscous forces, must overcome the

constant downward buoyancy force, defined as Fb = (ρp − ρf )πd
3g/6, in all cases studied.

In a turbulent boundary layer, the upward force could derive from mean effects such as

mean shear or short-term effects related to local fluid motions. Depending on the velocity

field surrounding the sphere, wall-normal drag can be significant (see e.g. van Hout, 2013).

Also, if Rep is sufficiently large, i.e. greater than ∼ 100, vortex shedding off of the sphere

may generate intermittent wall-normal forces (see Zeng et al., 2008; van Hout et al., 2018).

Among these possibilities, we first consider the effect of mean shear on the initial sphere

wall-normal motion using Hall’s (1988) equation obtained for a fixed sphere in a turbulent

boundary layer such that Fy = F+
y ν2ρf . If the mean wall-normal fluid-induced force is

greater than the net buoyancy force, then Fy

∗
= (Fy − Fb)/Fb > 0, and the sphere is

expected to lift off upon release from rest on average (see Table 2). The uncertainty of this

equation was approximately ±0.15Fy for both flow Reynolds numbers investigated.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 3: Samples of (R = 4/10 runs) sphere wall-normal trajectories at (a) Reτ = 680 and (b) Reτ =

1320 respectively plotted based on the centroid positions. Left axis: plotted in viscous units; Right axis:

normalized by the sphere diameter, d. Specific gravity: P1 = 1.006 (black), P2 = 1.054 (green) and P3 =

1.152 (purple).

For the least dense sphere P1, at Reτ = 680, Fy

∗
= 12. Increasing Reτ to 1320 doubled

d+ so that the estimated mean force increased sixfold. These estimations correlated very well

with our observations for P1 (plotted as black in Fig. 3). At Reτ = 680, this sphere lifted

off immediately and within approximately 0.3δ or 3d in 65% and 18% of 75 runs observed,

respectively. In the remaining runs, it lifted off at downstream locations significantly greater

than 0.3δ. Meanwhile, at Reτ = 1320, this sphere always lifted off immediately upon release

in 75 runs observed. Owing to the stronger resultant upward force at higher Reτ , sphere

P1 initially rose to greater heights than at the lower Reτ in nine out of ten trajectories

reconstructed. Thus, the initial lift-off height correlated strongly with the local mean shear

(dU(y)/dy) which is 40% higher for the higher Reτ . In a recent fully-resolved DNS of

flow over a sphere initially resting on a porous rough bed, Yousefi et al. (2020) showed a

resuspension case with Fy

∗
= 15 that lifted off initially up to y = 2.5d in one of the four

runs simulated.

Although Fy

∗
= −0.2 at Reτ = 680 for sphere P2, it lifted off of the wall one out of

ten runs (plotted as green in Fig. 3a). In the remaining runs, this sphere mainly translated

along the wall once released. Meanwhile, at higher Reτ (plotted as green in Fig. 3b), this
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sphere lifted off of the wall eight out of ten runs due to the stronger mean upward lift force

(Fy

∗
= 3.4). At this Reτ , all initial lift-off heights were lower than those of P1.

For the densest sphere P3, at the lower Reτ , no initial lift-off was observed in 65 runs.

The sphere did not have sufficient upward lift to overcome the downward buoyance force

(Fy

∗
= −0.74) and translated along the wall upon release. At the higher Reτ , although

Fy

∗
= 0.45, sphere P3 lifted off of the wall only once in 65 runs.

In general, Hall’s (1988) equation provided a good estimate as to whether a sphere lifted

off initially. The variations in behavior observed for sphere P2 (and the one exception

observed for P3) are likely explained by instantaneous variations in streamwise velocity

approaching and surrounding them. The r.m.s. streamwise fluid velocities at the initial

sphere centroid positions at Reτ = 680 and 1320 were 20% and 15% of the unperturbed local

mean value respectively (see Fig. 2b). Thus, according to the Hall’s (1988) equation, the

instantaneous lift forces could vary up to 40% and 26% from Fy respectively. Similarly, the

instantaneous wall-normal drag force can vary depending on the local velocity fields. These

time-dependent variations in the lift and wall-normal drag forces, can also help explain the

large variations in initial lift-off heights observed for the lifting spheres released under the

same mean fluid condition. Finally, it is important to point out that Hall’s (1988) equation

was fitted based on experimental data up to Rep = 1250. Hence, our observations on sphere

P3 at Reτ = 1320 with Rep = 1840 suggest that Hall’s (1988) equation might over-predict

the mean wall-normal fluid-induced force for spheres with Rep > 1250.

Spheres that initially lifted off always descended towards the wall after reaching a lo-

cal maximum in height. While the net buoyancy force was downward in all cases, these

descents could be aided by changes in the wall-normal force after the spheres moved away

from the wall (see Zeng et al. (2008) and additional discussion in Section 3.1.3 below).

Sphere P1 at Reτ = 1320 either recontacted the wall and then lifted off (saltation) or else

reached a minimum height above the wall before reascending to a higher location (resus-

pension). In all other lifting cases, the spheres always recontacted the wall and then either

lifted off again (saltation) or else translated along the wall (sliding and/or rolling). These

propagation modes were previously observed by Francis (1973), Abbott and Francis (1977),
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Sumer and Deigaard (1981), Niño et al. (1994) and van Hout (2013) with particles propa-

gating over rough or smooth beds.

During either saltation or resuspension, sphere P1 frequently ascended to greater heights

than those attained after the initial release, with the maximum height observed of y ≈ 2.3d.

This behavior was observed in 10/10 and 7/10 runs investigated at Reτ = 680 and 1320

respectively. At Reτ = 680, this sphere collided with the wall and saltated more frequently

than at Reτ = 1320 where it mostly propagated above and further away from the wall. By

contrast, the maximum heights observed for spheres P2 and P3 were 0.3d or less throughout

their entire trajectories. Interestingly, sphere P3 exhibited a consistent lift-off pattern that

was different from the other spheres. Although this sphere did not generally lift off upon

release, after it had traveled along the wall a certain distance, repeated small lift-off events

began to take place (see figures 5(c, d) for better illustration). This behavior, which was

observed for both Reτ , typically began when x & 2δ. Even though sphere P1 lifted off to

a larger height than other spheres throughout the trajectories, its rising and falling angles

were always less than 12◦, and typically stayed below 5◦. For spheres P2 and P3, the rising

and falling angles were typically 2− 3◦.

3.1.2. Sphere Streamwise Velocity

Figures 4(a, b) represent the sphere mean streamwise velocities (Up) obtained based on

averaging Up at each streamwise location over R = 10 curves for each case. Once released,

the spheres gained momentum from the hydrodynamic drag force and accelerated rapidly

with the flow. At a streamwise location close to 0.5δ, the acceleration magnitudes decreased

sharply and the spheres began to approach an approximate mean terminal velocity. From

there onward, the mean velocity curves stay relatively flat for all spheres except for sphere

P3 at Reτ = 680 where the sphere accelerated again near x ≈ 1.5δ to a new approximate

mean terminal velocity. Interestingly, even though the details of sphere motions between P2

and P3 were comparatively different, at both Reτ , their mean velocity curves tend towards

similar values. Note that in all cases, after achieving approximate terminal velocity (x > 2δ),

the statistical uncertainty in Up, estimated based on ± tσ√
R
where σ is the standard deviation
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Fig. 4: (a, b) Sphere mean streamwise velocity, Up normalized by free stream velocity, U∞ at Reτ = 680

and Reτ = 1320 respectively. (c, d) Samples of (R = 4/10 runs) sphere streamwise velocity, Up normalized

by mean unperturbed streamwise fluid velocity (U(y)) at the height of the sphere centroid at Reτ = 680

and Reτ = 1320 respectively. Black: P1; Green: P2; Purple: P3.

and t = 2.262 for 95% confidence level, is always less than ±15% of the respective mean

value.

Considering spheres that propagated along the wall, the initial acceleration of sphere

P3 at Reτ = 680 was much smaller than for sphere P2 at Reτ = 680 and sphere P3 at

Reτ = 1320. These trends can be interpreted by taking into account the forward drag and

opposing wall friction forces acting on each sphere at the time of release. We estimate the

initial drag force using FD = πρfCD(Ureld)
2/8 where CD is the drag coefficient obtained

from the standard drag curve (Clift et al., 1978) and Urel is the initial relative fluid velocity

at the sphere centroid location. Then, the friction force, defined as Ff = fcN where fc is a

constant friction coefficient and N = Fb−Fy is the approximate normal force for a non-lifting

sphere, is computed for sphere P2 and P3. At Reτ = 680, as the sphere density increased

from P2 to P3, friction increased by an order of magnitude. Hence, sphere P3 experienced
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stronger opposing wall friction and accelerated more weakly than P2 upon release. As Reτ

increased to 1320, the forward drag increased almost fourfold. Due to the smaller forward

drag force sphere P3 experienced at Reτ = 680 than at Reτ = 1320, its forward motion was

strongly retarded. Note also that for sphere P3, as Reτ increases, the friction force should

decrease due to the concomitant increase in Fy.

In a uniform, steady, unbounded flow, a sphere would accelerate until it approaches the

surrounding fluid velocity. However, in our studies, the presence of both turbulence and the

wall modify both the surrounding flow fields and the sphere kinematics. Based on figures

4(c, d), where Up is normalized by the mean unperturbed fluid velocity at the height of the

sphere centroid (U(y)) obtained from PIV, the sphere velocities mostly lagged behind the

local mean fluid velocity over the streamwise distance investigated. Sphere P1 came closer to

the mean local fluid velocity than the other particles, with mean velocity of approximately

0.9U(y) at both Reτ . For spheres P2 and P3, the curves began to level off around 0.6U(y)

and 0.7U(y) at Reτ = 680 and 1320 respectively. These differences are likely due to the fact

that P1 is typically detached from the wall while P2 and P3 are not. Moreover, on some

occasions, sphere P1 at both Reτ and sphere P2 at Reτ = 1320 traveled faster than the local

fluid mean.

In all runs, even after attaining an approximate terminal velocity, the individual sphere

velocity curves still fluctuate substantially. To better understand the fluctuations in the

velocity curves, sample wall-normal trajectories for sphere P1 (black) and P3 (purple) and

their corresponding streamwise velocities (blue) at both Reτ are plotted in Fig. 5. For sphere

P1, the local y-position correlates positively with the respective value of Up in all four runs

shown and in the additional runs corresponding to these cases. As sphere P1 ascended, it

gained more momentum from the faster moving fluid away from the wall and accelerated; as

it descended, it lost momentum due to the slower moving fluid near the wall and thus began

to decelerate. When we estimated the oscillating frequencies (f) of the streamwise velocity

curves at both Reτ , in portions of runs where Rep > 100, the resulting Strouhal number,

St = fd/Urel corresponded very well with the range of 0.1 to 0.2 associated with vortex

shedding (Zeng et al., 2008; van Hout et al., 2018). This behavior was observed frequently
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Fig. 5: Sphere wall-normal trajectories, y+ (left axis) and streamwise velocities, Up/U∞ (right axis; blue).

(a, c) Reτ = 680; (b, d) Reτ = 1320. Black: P1; Purple: P3. Solid and dashed lines in (a, b) represent two

individual runs.

for both Reτ , and in almost every run at Reτ = 680 where, downstream of x = 0.5δ, Rep

remained larger on average.

Sphere P3 always stayed close to the wall, and where the height varied during very small

lift-off events (x > 2δ), it occurs at a much shorter wavelength than the corresponding

streamwise velocity fluctuations in the same region (see figures 5(c, d)). Therefore, these

variations appear decoupled. When x < 2δ, the velocity curve for Reτ = 680 varied strongly

at St ∽ 0.2 also suggesting vortex shedding. This behavior, which was common across

all runs for this case, manifests as short wavelengths in Fig. 5c due to the relatively small

propagation speed and large relative velocity in that region. After the sphere accelerated

again at x ∼ 2δ, the vortex shedding effect was still present. At Reτ = 1320, the streamwise

velocity curves also fluctuated at the vortex shedding frequency.
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While the effect of vortex shedding on sphere streamwise velocity is important in most

of the cases studied, the simulations by Zeng et al. (2008) on a fixed sphere located above

the wall showed that the oncoming wall turbulence was also an important contributor to

fluctuations in the streamwise force on the sphere. Similarly, in some instances, the timewise

variations in velocity magnitude observed herein are likely driven by local high and low

momentum regions that surround and move past the sphere. Our preliminary findings on

planar fluid velocity fields surrounding a moving sphere at y = 0.75d have shown that

a sphere enveloped by a long streamwise region of relatively slow moving fluid traveled

significantly slower than the same sphere enveloped by relatively fast moving fluid. Thus,

the local fluid velocity variations can explain the strong variations in sphere velocity at a

given streamwise location across different runs as well as some occasions where Up/U(y) > 1.

3.1.3. Sphere Wall-normal Velocity

The wall-normal sphere velocities (Vp) at Reτ = 1320 are plotted in Fig. 6a. Two sample

Vp curves are also plotted in blue on the right axis in Fig. 6b along with their respective

wall-normal trajectories in black on the left axis. The results show that upon release, sphere

P1 propagated with the highest Vp, up to 0.1U∞, and hence lifted off to a greater height

than other spheres. At the same time, the oscillating frequencies of the wall-normal velocity

for P1 in Fig. 6b, as well as in the other runs where Rep were also > 100, matched very

well with the Strouhal number associated with vortex shedding. As sphere P2 has greater

density than P1, it lifted off with smaller wall-normal velocity. Although the initial Vp of

P3 was zero, after x ≈ 2δ, the curves began to fluctuate at frequencies corresponding with

St ∼ O(1) or larger, with ascending velocity of approximately 0.05U∞. The higher values

of St imply that the small repeated lift-off events, which corresponded to the fluctuations

in wall-normal velocity, were not prompted by vortex shedding. Surprisingly, even though

sphere P3 was the heaviest sphere and lifted off less than 0.25d from the wall, it generally

reached Vp magnitudes larger than those of P2 and comparable to those of P1. Similar

wall-normal velocity trends were observed at the lower Reτ for all spheres (not shown here

for brevity).
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Fig. 6: (a) Samples of (R = 4/10 runs) sphere wall-normal velocity at Reτ = 1320, Vp normalized by free

stream velocity, U∞. Black: P1; Green: P2; Purple: P3. (b, c) Sphere P1 at Reτ = 1320; Left axis:

wall-normal trajectories, y+ (black); Right axis: sphere wall-normal velocity, Vp/U∞ and acceleration, ay,p

respectively (blue). Solid and dashed lines represent two individual runs plotted. Red line in (c) represents

ay,p = 0.

On the other hand, during descents, as shown in Fig. 6a, P1 moved towards the wall

with minimum values close to Vp ≈ −0.06U∞, almost double its settling velocity. In most

runs, P1 descended with negative Vp value larger than or comparable to those observed

for both the denser spheres. A similar finding was observed in the numerical simulation of

Yousefi et al. (2020), where their resuspending sphere also descended with magnitude larger

than Vs value at multiple instances along its trajectory.

When the sphere was held at rest in the flow, Rep was 760 and 1840 for Reτ = 680 and

1320, respectively. After strong initial accelerations, these values decreased significantly in

all cases. Beyond x = 3δ, the average Rep values were larger for P2 and P3 (O(300) and

O(400) at Reτ = 680 and 1320 respectively) than for P1 (O(200) at both Reτ ). While

the initial lift-off events were governed mainly by the mean shear lift (as in Hall, 1988;
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Yousefi et al., 2020), the reduction in related upward force associated with the decrease

in Rep should weaken the subsequent lift-off activity. However, the resulting wall-normal

trajectories and velocities of the spheres demonstrated that the sphere lift-off heights could

be larger downstream than those upstream. This signifies the presence of a strong upward

impulse of a similar or larger value than that related to the initial mean shear lift. Similarly,

for instances where the sphere descended faster than its settling velocity, the presence of a

downward fluid impulse can be as significant as that due to the negative buoyancy force.

In this context, Zeng et al. (2008) inferred that the strong instantaneous positive and

negative wall-normal forces observed on a fixed sphere were closely associated with ejection

and sweep events. Studies by Sutherland (1967) and van Hout (2013) on moving particles, for

example, have shown that ejection events are responsible for particle lift-offs. These findings

suggest that the subsequent lift-off events of larger magnitudes observed in the current study

are likely triggered and aided by coherent fluid motions. While ejection events could provide

the sphere with upward momentum, negative wall-normal fluid motions such as sweeps could

provide the sphere with sufficient downward momentum to descend faster than its settling

velocity. Depending on the type and strength of coherent structures encountered by a

sphere, its wall-normal motion can vary significantly (as shown in Fig. 3) with the change

in instantaneous lift and wall-normal drag forces. As a reference, the r.m.s. wall normal

fluctuating velocity (vrms) for 29 < y+ < 300 could vary between 3 and 5% of U∞ at both

Reτ .

It is notable that, over the streamwise distances investigated, all sphere trajectories

were limited approximately to the buffer and logarithmic regions where turbulent activity

is strongest. Thus, although a sphere could be lifted to significant heights above the wall,

the wall-normal impulses were not sufficient to drive it to even greater heights. Considering

the nature of the impulse, it can derive from a large upward force exerted over a short time

or a smaller force exerted over a longer time. For all three spheres examined, the upward

impulse must counteract a downward one due to gravity. The wall-normal acceleration

for sphere P1 plotted in Fig. 6c revealed multiple behaviors. In one run (solid curves),

the sphere acceleration, and net impulse, was initially positive until it reached y+ = 150.

http://creativecommons.org/licenses/by-nc-nd/4.0/


c©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license.
http://creativecommons.org/licenses/by-nc-nd/4.0/

Further downstream, beginning at x = 1.3δ, the sphere again experienced a sustained upward

acceleration over the range 175 < y+ < 220. By contrast, in the other run (dashed curves),

the initial upward acceleration lasted only for a short distance until the sphere rose to

y+ = 80. Further downstream, however, starting at x = 1.8δ, the same sphere experienced

another upward acceleration as it rose from the wall up to y+ = 140. The fact that the

turbulent activity, and the probability of sustained upward fluid motions, dies off beyond

the logarithmic region, helps explain the observed result that the spheres examined never

rose above a limit of y+ = 282 (y/δ = 0.21) within the field of view investigated.

The wall-normal trajectories plotted in Fig. 3 showed that in most runs, spheres that

initially lifted off descended and collided with the wall before lifting off again. Thus, to

better understand the effect of collision on sphere lift-off events, the coefficient of restitution

(e), which is the ratio of wall-normal velocity after impact (Vf ) to wall-normal velocity before

impact (Vi), was computed. Among all collision incidents, e was always zero. After colliding

with the wall, the spheres slid for a distance of at least 0.1d (> 3 frames) before lifting off

again. When the impact Stokes numbers, defined as Sk = ρpVid/18νρf , are calculated, in

all trajectories, Sk < 10. Therefore, the e = 0 result for Sk < 10 is consistent with previous

experiments on particles moving through quiescent fluid and impacting on solid surfaces

(Joseph et al., 2001; Gondret et al., 2002).

3.1.4. Sphere Spanwise Motion and Velocity

Sphere trajectories in the streamwise-spanwise plane are plotted in Fig. 7. Once released,

instead of propagating along z = 0, the spheres typically moved sideways, occasionally

reversing direction, with some crossings over z = 0. For P3 at Reτ = 680 and x < 2δ, the

spanwise trajectories exhibited shorter wavelength fluctuations than the other cases. In all

cases, the maximum spanwise distance traveled from z = 0 was approximately 12% of the

corresponding streamwise distance traveled. This magnitude is similar to that reported by

Yousefi et al. (2020) for their resuspension case where the sphere traveled mostly away from

the bed. Considering all cases, including the lifting sphere P1 at Reτ = 1320, in most runs,

the absolute spanwise migration magnitudes were comparable to or larger than the lift-off
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Fig. 7: Samples of (R = 4/10 runs) sphere spanwise trajectories, z at (a) Reτ = 680 and (b) Reτ = 1320

respectively.

Fig. 8: (a) Samples of (R = 4/10 runs) sphere absolute spanwise velocities, |Wp| normalized by free stream

velocity. Black: P1; Green: P2; Purple: P3. (b) Sphere P1 at Reτ = 1320. Left axis: spanwise trajectories,

z+ (black); Right axis: spanwise velocities, Wp (blue). Solid and dashed lines correspond to the two

individual runs plotted in Fig. 6b.

magnitudes (see figures 6b and 8b).

The absolute spanwise velocities (|Wp|) for spheres at Reτ = 1320 are illustrated in Fig.

8a. Overall, |Wp| varied over larger magnitudes than |Vp|. By comparing Wp with Vp for

sphere P1 at Reτ = 1320 (see sample runs in figures 6b and 8b), including during the lift-off

events, the magnitude ofWp typically exceeded that of Vp. At the same time, the fluctuations

in Wp in both runs shown corresponded directly with those appearing in Vp at the vortex

shedding frequency. This correspondence was apparent as well in portion of other runs where

Rep > 100 as highlighted in Section 3.1.2. Despite the distinct differences in Vp curves for

spheres of different specific gravities, P2 and P3 attained values ofWp comparable to those of
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P1 throughout their trajectories. Even though the wall-normal and spanwise velocity curves

appeared uncorrelated for both P2 and P3, the spanwise velocity curves also fluctuated at

St ∼ 0.1-0.2 suggesting vortex shedding in those cases as well. Similar spanwise velocity

trends were observed at the lower Reτ for all spheres (not shown here for brevity). For

comparison, at Reτ = 1320 and 29 < y+ < 300, the fluid spanwise r.m.s. exceeds the wall-

normal r.m.s. value, e.g., at y+ = 60, wrms/U∞ = 0.06 and vrms/U∞ = 0.04 (Jiménez et al.,

2010). Therefore, within the buffer and logarithmic regions, spanwise forces exerted by the

fluid can be larger than the comparable wall-normal forces (see also Zeng et al., 2008). Our

preliminary results including fluid velocity fields reveal that the sphere spanwise motion is

significantly affected by spanwise fluid drag. For example, we observed that sphere enveloped

by the low momentum region tended to travel in the spanwise direction together with the

surrounding fluid. More quantitative findings on the correlation between sphere and fluid

spanwise velocities are under investigation.

3.2. Sphere Rotation

Figure 9 depicts sphere orientation components for R = 4/10 runs of all six cases in-

vestigated. The orientations were calculated by integrating the respective angular velocities

obtained from the rotation matrix. Depending on the mode of translation, two distinct

trends were observed. Spheres that mostly traveled above the wall, namely sphere P1 at

both Reτ and sphere P2 at Reτ = 1320, rotated less than half a revolution about all axes

throughout the range examined. These weak rotations occurred mostly during the acceler-

ation stage when x < 0.5δ. Notably, even in the presence of strong initial mean shear, the

spheres did not develop any significant forward rolling motion (rotation about the negative

z-axis). Also, no significant correlations were found between rotation about the streamwise

axis (θx) and spanwise migration. Without wall friction, these small rotations were most

likely induced by the flow structures such as individual vortices or shearing regions.

By contrast, spheres that mostly traveled along the wall, namely sphere P2 at Reτ = 680

and sphere P3 at both Reτ , developed significant rotations starting from x & 1.5δ. Upon

release, these spheres mainly slid along the wall and barely rolled. For x . 1.5δ, their
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Fig. 9: Samples of (R = 4/10 runs) sphere orientation tracks (θx, θy and θz) at Reτ = 1320 (a-c) and

Reτ = 680 (d-f) , respectively.

θz magnitudes were smaller than either θx or θy, and of similar magnitude to those of the

lifting spheres. Further downstream, however, these spheres began to roll forward. This is

clearly indicated by the sharp and steady decrease of θz values in the plots. While rolling

forward, these spheres also rotated about the y-axis significantly, exhibiting coupled rotation

behavior. This wall-normal rotation could possibly be triggered by adjacent fast and slow

moving zones in the boundary layer which would generate a hydrodynamic torque about the

y-axis.

Within the field of view investigated, for the wall-interacting spheres, θx magnitudes

were the smallest when compared to θy and θz. For spheres P2 and P3 at Reτ = 680, the

fluctuations in θx curves correlated very well with the spanwise trajectories in most runs.

In figures 10 (a, d), two examples of spanwise trajectories for sphere P3 at Reτ = 680 are

plotted as purple on the left axis, while their orientations about the streamwise axis are

plotted as blue on the right axis. In both examples, when z is positive, θx is positive and

when z is negative, θx is negative. Moreover, the spanwise displacements calculated based
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Fig. 10: Sphere P3 at Reτ = 680. Solid and dashed lines represent two individual runs. (a, d) Left axis:

sphere spanwise trajectories, z/δ (purple) and angular displacement, sz (red); Right axis: sphere rotational

angle about streamwise axis, θx (blue). (b, e) Left axis: sphere wall-normal trajectories, y+ (purple); Right

axis: sphere rotational angle about wall-normal axis, θy (blue). (c, f) Left axis: y+ (purple); Right axis:

sphere rotational angle about spanwise axis, θz (blue).

on sz = θxd/2 for a pure rolling motion (plotted as red relative to the left axis) matched

very well with the z-trajectories as shown in figures 10 (a, d). This implies that the spanwise

sphere motions were induced by the streamwise rotations, and while propagating sideways,

these spheres were mostly rolling about the x-axis instead of sliding. These rotations could

possibly be initiated by quasi-streamwise vortices or spanwise motions in the fluid.

To quantify the relative importance of sliding and forward rolling, we define a dimen-

sionless rotation rate, αz = |Ωz|d/2Up, which relates the sphere rotational velocity about

the spanwise axis, Ωz to its streamwise translational velocity. If αz is 0, the sphere is under-

going pure translation or sliding in the streamwise direction; if αz is 1 and the sphere is in

contact with the wall, the sphere is undergoing pure forward rolling without slipping. The

dimensionless rotation rates were calculated based on the slope of the mean x-trajectory

and θz curves for the wall-interacting spheres. For the densest sphere P3, when x > 3δ, the

mean αz values at Reτ = 680 and 1320 were approximately 0.6 and 0.4 respectively. This
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implies a stronger rolling-to-sliding tendency at the downstream location as Reτ decreases.

Although the θz slope of sphere P2 at Reτ = 680 also increased over time, the mean value of

αz ∼ 0.2 infers that translation and sliding remained more important than rotation within

the range investigated. Overall, sphere P3 at Reτ = 680 exhibited the strongest rotations.

As discussed in Section 3.1.2, the denser sphere P3 experienced higher wall friction than P2.

Hence, at Reτ = 680, it rolled forward with larger angular velocity than P2. Also, as Reτ

increased to 1320, the wall friction weakened and so did the forward rotation.

Finally, we discuss the forward rolling and small repeated lift-off events observed with

sphere P3. At Reτ = 680, we noticed that prior to lifting off at x ≈ 2δ, the sphere had

already begun to roll forward and also rotate about both x- and y-axes (see Fig. 10). After

the sphere began rolling, the streamwise velocity also increased steeply (see figures 4 and

5c). It is unclear how the rolling initiates. In the sliding P3 case, gravity dominates the wall

normal force so that torque from wall friction is relatively constant along the trajectory.

On the other hand, the forward drag force decreases significantly with increasing sphere

velocity, and any torque from fluid friction is also likely to change on average. Further,

time-wise variations in the approaching fluid velocity field may cause significant variations

in torque. Once the sphere begins rolling, Magnus lift can play a role. Kim et al.’s (2014)

experiment on spinning spheres in uniform flow reported that as αz increased from 0.1 to

0.6, CL increased from approximately 0.05 to 0.3. These values are comparable to the initial

CL estimated from Hall’s (1988) equation where CL = 8Fy/πρf (Ureld)
2 ≈ 0.2. Therefore,

the contribution of a Magnus force in the P3 lift-off events is likely to be important. It is

also notable that the weaker rotations of P2 appeared insufficient to generate these high

frequency lift-offs. For P3, the Magnus lift and repeated lift-offs must reduce wall friction

and contribute to the second acceleration stage observed.

4. Conclusions

Three-dimensional translation and rotation of spheres with diameter of 58 and 122 vis-

cous units at Reτ = 680 and 1320 were reconstructed successfully for multiple cases where

the relative importance of gravity and mean shear was varied. Particles released from rest
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were tracked individually over a streamwise distance up to x ≈ 5.5δ. Among all cases, two

distinct types of dynamics were observed based on the sphere wall-normal trajectories and

rotation behaviors. They included lifting spheres (sphere P1 at both Reτ and sphere P2 at

Reτ = 1320) and wall-interacting spheres (sphere P2 at Reτ = 680 and sphere P3 at both

Reτ ).

Upon release, the lifting spheres separated from the wall in most runs when the mean

shear lift force was larger than the net buoyancy force. Due to velocity variations within the

turbulent boundary layer, the initial fluid-induced force and lift-off height varied. Since the

spheres always reached a maximum height in the logarithmic region before descending toward

the wall, it is clear that any initial upward force, possibly induced by mean shear lift, upward

moving fluid, or even vortex shedding, decreased significantly as the sphere suspended. After

the period of descent, the spheres either ascended again without returning to the wall or

else contacted the wall and then slid before lifting off again to heights reaching y ≈ 2.3d (or

y+ ≈ 135 and 282 at Reτ = 680 and 1320 respectively) for the least dense sphere. Although

these spheres mostly traveled above the wall, they nevertheless lagged behind the mean

fluid velocity even after attaining an approximate average terminal velocity, propagating

with Rep ∼ O(200). Hence, vortex shedding could typically be present, affecting both the

surrounding flow fields and the sphere motions. Since the mean shear lift decreases with

Rep, all subsequent lift-off events, especially those that reached heights larger than the

initial maximum values, are likely prompted by local fluid upwash or local variations in the

velocity field, including those related to vortex shedding when Rep > 100. Sometimes the

fluid motions acted in the opposite direction, e.g., pushing sphere P1 downward with wall-

normal velocity double its gravitational settling velocity. Throughout their propagation, the

lifting spheres translated with very weak or minimal rotations about any axis.

Upon release, the wall-interacting spheres first slid along the wall with minimal rotation.

At Reτ = 680, the initial acceleration of the dense sphere P3 was significantly retarded by

the opposing friction force, in contrast to the other spheres that accelerated steeply over a

streamwise distance of δ. In this region, vortex shedding led to strong and regular variations

in the streamwise velocity. After the wall-interacting spheres propagated downstream by
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≈ 1.5δ, forward rolling (with slipping) followed by repeated small lift-off events of magnitude

less than 0.1d began to occur. Since the collisions were completely inelastic (e = 0), and the

wall-normal velocity fluctuated at a frequency higher than that expected for vortex shedding,

the repeated lift-off events were not caused either by rebounding or vortex shedding. Instead,

Magnus lift is most likely the reason behind the lift-off events. While rolling forward, the

spheres also rotated about the x- and y-axes, exhibiting coupled rotation behavior.

In all cases, the spheres moved sideways significantly. Due to direct wall interactions,

the spanwise motions of the denser spheres were strongly correlated with rotation about the

x-axis. Even though the lifting spheres mostly traveled above the wall, they still migrated

up to 12% of the streamwise distance traveled. Their spanwise velocities were mostly equal

to or larger than the wall-normal velocities and fluctuated at the vortex shedding frequency.

Hence, spanwise forces were substantial in all cases and could be prompted either by rolling

about the x-axis, shed vortices, or spanwise fluid motions.

To summarize, the kinematics of spheres in a boundary layer are complicated. The co-

herent structures in the boundary layer such as high and low momentum regions, as well

as vertical and spanwise fluid motions, can have significant effects on both translation and

rotation. Since the finite-size spheres propagated toward their own wakes with velocities

smaller than the local mean flow, vortex shedding effects were likely significant in all cases

investigated such that some of the sphere velocity variations corresponded with expected

shedding frequencies. Wall friction was important in impeding acceleration of the denser

spheres as well as in prompting the rolling motions. Recently, we have conducted simultane-

ous stereoscopic PIV and sphere tracking experiments to resolve fluid motions surrounding

a moving sphere. These results will be analyzed and discussed in a future communication

to complement the current observations and better understand both the particle-wall and

particle-turbulence interactions.
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