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Abstract
The variable ordering heuristic is an important module in algorithms dedicated to solve Constraint Satisfaction Problems (CSP),

while it impacts the efficiency of exploring the search space and the size of the search tree. It also exploits, often implicitly, the
structure of the instances. In this paper, we propose Conflict-History Search (CHS), a dynamic and adaptive variable ordering heuristic
for CSP solving. It is based on the search failures and considers the temporality of these failures throughout the solving steps. The
exponential recency weighted average is used to estimate the evolution of the hardness of constraints throughout the search. The
experimental evaluation on XCSP3 instances shows that integrating CHS to solvers based on MAC (Maintaining Arc Consistency)
and BTD (Backtracking with Tree Decomposition) achieves competitive results and improvements compared to the state-of-the-art
heuristics. Beyond the decision problem, we show empirically that the solving of the constraint optimization problem (COP) can also
take advantage of this heuristic.

1 Introduction
The Constraint Satisfaction Problem (CSP) is an important formalism in Artificial Intelligence (AI) which allows to model and
efficiently solve problems that occur in various fields, both academic and industrial (e.g. [8, 19, 37, 40]). A CSP instance is defined
on a set of variables, which must be assigned in their respective finite domains. Variable assignments must satisfy a set of constraints,
which express restrictions on assignments. A solution is an assignment of each variable, which satisfies all constraints.

CSP solving is often based on backtracking algorithms. In recent years, it has made significant progress thanks to research on
several aspects. In particular, considerable effort is devoted to global constraints, filtering techniques, learning and restarts [37].
An important component in CSP solvers is the variable ordering heuristic. Indeed, the corresponding heuristics define, statically or
dynamically, the order in which the variables will be assigned and, thus, the way that the search space will be explored and the size
of the search tree. The problem of finding the best variable to assign (i.e. one which minimizes the search tree size) is NP-Hard [30].

Many heuristics have been proposed (e.g. [4, 5, 6, 7, 12, 13, 18, 32, 35]) aiming mainly to satisfy the first-fail principle [17]
which advises ”to succeed, try first where you are likely to fail”. Nowadays, the most efficient heuristics are adaptive and dynamic
[6, 12, 18, 32, 35], where the variable ordering is defined according to the collected information since the beginning of the search.
For instance, some heuristics consider the effect of filtering when decisions and propagations are applied [32, 35]. dom/wdeg is
one of the simplest, the most used and efficient variable ordering heuristic [6]. It is based on the hardness of constraints and, more
specifically, reflects how often a constraint fails. It uses a weighting process to focus on the variables appearing in constraints with
high weights which are assumed to be hard to satisfy. In addition, some heuristics, such as LC [25] and COS [11], attempt to consider
the search history while they require the use of auxiliary heuristics.

In this paper, we propose Conflict-History Search (CHS), a new dynamic and adaptive variable ordering heuristic for CSP solving.
It is based on the history of search failures, which happen as soon as a domain of a variable is emptied after constraint propagations.
The goal is to reward the scores of constraints that have recently been involved in conflicts and therefore to favor the variables
appearing in these constraints. The scores of constraints are estimated on the basis of the exponential recency weighted average
technique, which comes from reinforcement learning [41]. It was also recently used in defining powerful branching heuristics for
solving the satisfiability problem (SAT) [28, 29]. We have integrated CHS in solvers based on MAC (Maintaining Arc Consistency)
[38] and BTD (Backtracking with Tree-Decomposition) [24]. The empirical evaluation on XCSP3 instances1 shows that CHS is
competitive and brings improvements to the state-of-the-art heuristics. In addition, this evaluation provides an extensive study of the
performance of state-of-the-art search heuristics on more than 12,000 instances. Finally, we also study, from a practical viewpoint,
the benefits of the proposed heuristic for solving constraint optimization problems (COP).

The paper is structured as follows. Section 2 includes some necessary definitions and notations. Section 3 presents and details
our contribution, the CHS variable ordering heuristic. Section 4 describes related work on variable ordering heuristics for CSP and

*The final authenticated version is available online at https://doi.org/10.1007/s10732-021-09475-z. This work is an extension of the work
published in [16].

1http://www.xcsp.org
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on branching heuristics for the satisfiability problem. CHS is evaluated experimentally and compared to the main powerful heuristics
of the state-of-the-art on CSP instances in Section 5 and on COP ones in Section 6. Finally, we conclude and give some perspectives
on extending the application of CHS.

2 Preliminaries
This section is dedicated to the definition of CSP and Exponential Recency Weighted Average, which we use to propose our heuristic.

2.1 Constraint Satisfaction Problem
An instance of a Constraint Satisfaction Problem (CSP) is given by a triple (X,D,C), such that: X = {x1, · · · , xn} is a set of n
variables, D = {D1, ..., Dn} is a set of finite domains, and C = {c1, · · · , ce} is a set of e constraints. The domain of each variable
xi is Di. Each constraint cj is defined by its scope S(cj) and its compatibility relation R(cj), where S(cj) = {xj1 , · · · , xjk} ⊆ X
and R(cj) ⊆ Dj1 × · · · × Djk . The constraint satisfaction problem asks for an assignment of the variables xi ∈ X within their
respective domains Di (1 ≤ i ≤ n) that satisfies each constraint in C. Such consistent assignment is a solution. Checking whether a
CSP instance has a solution is NP-complete [37].

In the past decades, many solvers have been proposed for solving CSPs. Generally, from a practical viewpoint, they succeed in
solving efficiently a large kind of instances despite of the NP-completeness of the CSP decision problem. In most cases, they rely
on optimized backtracking algorithms whose time complexity is at least in O(e.dn) where d denotes the size of the largest domain.
In order to ensure an efficient solving, they commonly exploit jointly several techniques (see [37] for more details) among which we
can cite:

• variable ordering heuristics which aim to guide the search by choosing the next variable to assign (we discuss about some
state-of-the-art heuristics in Section 4),

• constraint learning and non-chronological backtracking which aim to avoid some redundancies during the exploration of the
search space,

• filtering techniques enforcing some consistency level which aim to simplify the instance by removing some values from do-
mains or tuples from constraint relations which cannot participate to a solution.

For instance, most state-of-the-art solvers maintain some consistency level at each step of the search, like MAC (Maintaining Arc-
Consistency [38]) or RFL (Real Full Look-ahead [34]) do for arc-consistency. This latter turns out to be a relevant tradeoff between
the number of removed values and the runtime.

We now recall MAC with more details. During the solving, MAC develops a binary search tree whose nodes correspond to
decisions. More precisely, it can make two kinds of decisions: positive decisions xi = vi which assign the value vi to the variable
xi and negative decisions xi 6= vi which ensure that xi cannot be assigned with vi. Let us consider Σ = 〈δ1, . . . , δi〉 (where each δj
may be a positive or negative decision) as the current decision sequence. At each node of the search tree, MAC takes either a positive
decision or negative one. When reaching a new level, it starts by a positive decision which requires to choose a variable among
the unassigned variables and a value. Both choices are achieved thanks to heuristics. Then, once the decision made, MAC applies
an arc-consistency filtering. This filtering deletes some values of unassigned variables which are not consistent with the last taken
decision and Σ. By so doing, a domain may become empty. In such a case, we say that a dead-end or a conflict occurs. This means
that the current set of decisions cannot lead to a solution. If no dead-end occurs, the search goes on to the next level by choosing a
new positive decision. Otherwise, the current decision is called into question. If it is a positive decision xi = vi, MAC makes the
corresponding negative decision xi 6= vi, that is the value vi is deleted from the domain Di. Otherwise, it is a negative decision and
MAC backtracks to the last positive decision x` = v` in Σ and makes the decision x` 6= v`. If no such decision exists, it means
that the instance has no solution. In contrast, if MAC succeeds in assigning all the variables, the corresponding assignment is, by
construction, a solution of the considered instance.

More recently, restart techniques have been introduced in the CSP framework (e.g. in [27]). They generally allow to reduce
the impact of bad choices performed thanks to heuristics (like the variable ordering heuristic) or of the occurrence of heavy-tailed
phenomena [14]. For efficiency reasons, they are usually exploited with some learning techniques like recording of nld-nogoods in
[27]. These nogoods can be seen as a set of decisions which cannot be extended to a solution. They are used to avoid visiting again a
part of the search space which has already been visited by MAC. These nogoods are recorded each time a restart occurs.

2.2 Exponential Recency Weighted Average
Given a time series of m numbers y = (y1, y2, · · · , ym), the simple average of y is

∑m
i=1

1
myi where each yi has the same weight

1
m . There are situations where recent data are more relevant than old data to describe the current situation. The Exponential Recency
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Weighted Average (ERWA) [41] takes into account such considerations by giving higher weights to the recent data than the older
ones. More precisely, the exponential moving average ȳm is computed as follows:

ȳm =

m∑
i=1

α× (1− α)m−i × yi

where 0 < α < 1 is a step-size parameter which controls the relative weights between recent and past data. The moving average can
also be calculated incrementally by the formula:

ȳm = (1− α)× ȳm−1 + α× ym.

The base case is ȳ0 = 0. ERWA is used to solve the bandit problem to estimate the expected reward of different actions in nonsta-
tionary environments [41]. In bandit problems, the agent must select an action to play, from a given set of actions, while maximizing
its long term expected reward.

3 Conflict-History Search for CSP
This section is dedicated to our contribution by defining and describing a new variable ordering heuristic for CSP solving, which we
call Conflict-History Search (CHS). The main idea is to consider the history of constraint failures and favor the variables that often
appear in recent failures. In this order, the conflicts are dated and the constraints are weighted on the basis of the exponential recency
weighted average. These weights are coupled with the variable domains to calculate the Conflict-History scores of the variables.

3.1 CHS Description
Formally, CHS maintains for each constraint cj a score q(cj) which is initialized to 0 at the beginning of the search. If cj leads to
a failure during the search because the domain of a variable in S(cj) is emptied then q(cj) is updated by the formula below derived
from ERWA [41]:

q(cj) = (1− α)× q(cj) + α× r(cj)

The parameter 0 < α < 1 is the step-size and r(cj) is the reward value. The parameter α fixes the importance given to the old value
of q at the expense of the reward r. The value of α decreases over time as it is applied in reinforcement learning to converge towards
relevant values of q [41]. In other words, decreasing the value of α amounts to giving more importance to the last value of q and
considering that the values of q are more and more relevant as the search progresses. Furthermore, we are interested by the constraint
failure to follow the first-fail principle [17].

CHS applies the decreasing policy of α, which is successfully used for designing efficient branching heuristic for the satisfiability
problem [28, 29]. More precisely, starting from an initial value α0, α decreases by 10−6 at each constraint failure to a minimum of
0.06. This minimum value of α controls the number of steps before considering that a convergence is reached.

The reward value r(cj) is based on how recently cj occurred in conflicts. More precisely, it relies on the proximity between the
previous conflict in which cj is involved and the current one. By so doing, we aim to give a higher reward to constraints that fail
regularly over short periods of time during the search space exploration. The reward value is calculated according to the formula:

r(cj) =
1

Conflicts− Conflict(cj) + 1

Initialized to 0, Conflicts is the number of conflicts which have occurred since the beginning of the search. Conflict(cj) is also
initialized to 0 for each constraint cj ∈ C. When a conflict occurs on cj , r(cj) and q(cj) are computed. Then Conflicts is
incremented by 1 and Conflict(cj) is updated to the new value of Conflicts.

At this stage, we define the Conflict-History score of a variable xi ∈ X as follows:

chv(xi) =

∑
cj∈C: xi∈S(cj)∧|Uvars(S(cj))|>1

q(cj)

|Di|
(1)

Uvars(Y ) is the set of unassigned variables in Y . Di is the current domain of xi and its size may be reduced by the propagation
process in the current step of the search. CHS chooses the variable to assign with the highest chv value. In this manner, CHS focuses
branching on the variables with a small domain size belonging to constraints which appear recently and repetitively in conflicts.

One can observe that at the beginning of the search, all the variables have the same score, which is equal to 0. To avoid random
selection, we update Equation 1 to calculate chv as given below, where δ is a positive real number close to 0.

chv(xi) =

∑
cj∈C: xi∈S(cj)∧|Uvars(S(cj))|>1

(q(cj) + δ)

|Di|
(2)
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Thus, when the search starts, the branching will be oriented according to the degree of the variables without having a negative
influence on the ERWA-based calculation later in the search. CHS selects the branching variable with the highest chv value calculated
according to Equation 2.

The heuristic CHS is described in Algorithm 1 with an event-driven approach. Lines 2-7 correspond to the initialization step. If
a conflict occurs when enforcing the filtering with the constraint cj , the associated event is triggered and the score is update (Lines
8-14). The selection of a new variable is achieved thanks to Lines 15-16.

Algorithm 1: CHS
Input: an event e

1 switch e do
2 case initialization do
3 α← α0

4 Conflicts← 0
5 for cj ∈ C do
6 Conflict(cj)← 0
7 q(cj)← 0

8 case conflict when filtering with cj do
9 r(cj)← 1

Conflicts−Conflict(cj)+1

10 q(cj)← (1− α)× q(cj) + α× r(cj)
11 Conflicts← Conflicts+ 1
12 Conflict(cj)← Conflicts
13 if α > 0.06 then
14 α← α− 10−6

15 case select a new variable do

16 return a variable x s.t. x ∈ arg min
xi∈Uvars(X)

∑
cj∈C: xi∈S(cj)∧|Uvars(S(cj))|>1

(q(cj)+δ)

|Di|

17 case restart do
18 α← α0

19 for cj ∈ C do
20 q(cj)← q(cj)× 0.995Conflicts−Conflict(cj)

3.2 CHS and Restarts
Restart techniques are known to be important for the efficiency of solving algorithms (see for example [26]). Restarts may allow to
reduce the impact of irrelevant choices done during the search according to heuristics, such as variable selection.

As it will be detailed later, CHS is integrated into CSP solving algorithms, which include restarts. In the corresponding imple-
mentations, the Conflict(cj) value of each constraint cj is not reinitialized when a restart occurs. It is the same for q(cj). However,
a smoothing may be applied and will be explained below. Keeping this information unchanged reinforces learning from the search
history.

Concerning the step-size α, which defines the importance given to the old value of q(cj) at the expense of the reward r(cj), CHS
reinitializes the value of α to α0 at each restart (Line 18 of Algorithm 1). This may guide the search through different parts of the
search space.

3.3 CHS and Smoothing
At each conflict, CHS updates the chv score of one constraint at a time: the constraint cj which is used to wipe out the domain of
a variable in S(cj). As long as they do not appear in new conflicts, some constraints can have their weights unchanged for several
search steps. These constraints may have high scores while their importance does not seem significant for the current part of the
search. To avoid this situation, we propose to smooth the scores q(cj) of all the constraints cj ∈ C at each restart by the following
formula:

q(cj) = q(cj)× 0.995Conflicts−Conflict(cj)

Hence, the scores of constraints are decayed according to the date of their last appearances in conflicts (Lines 19-20 of Algorithm 1).
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4 Related Work
Before providing a detailed experimental evaluation of CHS and its components, we present the most efficient and common variable
ordering heuristics for CSP. As CHS, the recalled heuristics share the same behavior. In effect, the variables and/or constraints are
weighted dynamically throughout the search by considering the collected information since its beginning. Some of these heuristics,
such as Last Conflict [25], require the use of an auxiliary heuristic as it will be explained later. We also recall briefly branching
heuristics for the satisfiability problem. It should be recalled that ERWA was first used in the context of the satisfiability problem
[28, 29].

4.1 Impact-Based Search (IBS)
This heuristic selects the variable which leads to the largest search space reduction [35]. The impact on the search space size is
approximated as the reduction of the product of the variable domain sizes. Formally, the impact of assigning the variable xi to the
value vi ∈ Di is defined by:

I(xi = vi) = 1− Pafter
Pbefore

Pafter and Pbefore are respectively the products of the domain cardinalities after and before branching on xi = vi and applying
constraint propagations. By doing so, selecting the next branching variable requires the computation of the impact of each variable
assignment, by simulating filtering at each node of the search tree. This can be very time consuming. Hence, IBS considers the
impact of an assignment at a given node as the average of its observed impacts. More precisely, if K is the index set of impacts
observed of xi = vi, IBS estimates an averaged impact of this assignment as follows, where Ik is kth impact value:

Ī(xi = vi) =

∑
k∈K

Ik(xi = vi)

|K|

Finally, the impact of a variable according to its current domain, which may be filtered, is defined as follows:

I(xi) =
∑
v∈Di

1− Ī(xi = v)

IBS selects the variable with the highest impact value I(xi).

4.2 Conflict-Driven Heuristic
A popular variable ordering heuristic for CSP solving is dom/wdeg [6]. It guides the search towards the variables appearing in the
constraints which seem hard to satisfy. For each constraint cj , the dom/wdeg heuristic maintains a weight w(cj), initially set to 1,
counting the number of times that cj has led to a failure (i.e. the domain of a variable xi in S(cj) is emptied during propagation from
cj). The weighted degree of a variable xi is defined as:

wdeg(xi) =
∑

cj∈C: xi∈S(cj)∧|Uvars(S(cj))|>1

w(cj)

The dom/wdeg heuristic selects the variable xi to assign with the smallest ratio |Di|/wdeg(xi), such that Di is the current domain
of xi (the size of Di may be reduced in the current search step). Note that the constraint weights are not smoothed in dom/wdeg.
Also, variants of dom/wdeg were introduced, such as in [18], but are not widely used in practice. Very recently, a refined version of
wdeg (called wdegca.cd) has been defined in [43]. When a conflict occurs for a constraint cj , instead of increasing its weight by 1
as in dom/wdeg, wdegca.cd increases its weight by a value depending on the number of unassigned variables in the scope of cj and
their current domain size.

4.3 Activity-Based Heuristic (ABS)
ABS is motivated by the prominent role of filtering techniques in CSP solving [32]. It exploits this filtering information and maintains
measures of how often the variable domains are reduced during the search. In practice, at each node of the search tree, constraint
propagation may filter the domains of some variables after the decision process. Let Xf be the set of such variables. Accordingly,
the activities A(xi), initially set to 0, of the variables xi ∈ X are updated as follows:

• A(xi) = A(xi) + 1 if xi ∈ Xf

• A(xi) = γ ×A(xi) if xi 6∈ Xf

γ is a decay parameter, such that 0 ≤ γ ≤ 1. The ABS heuristic selects the variable xi with the highest ratio A(xi)/|Di|.
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4.4 CHB in Gecode
Dedicated to constraint programming, Gecode solver implements Conflict-History based Branching (CHB) heuristic since version
5.1.0 released in April 2017 [39]. It follows the same steps of the first definition of CHB in the context of the satisfiability problem
[28, 29]. In Gecode, the following parameters are used to update theQ-score of each variable xi of the CSP instance, denoted qs(xi).
f is the number of failures encountered since the beginning of the search and lf(xi) is the last failure number of xi, corresponding
to the last time that Di is emptied.

Initialized to 0.05 for each variable xi, CHB update the Q-score qs(xi) of xi during the constraint propagation as follows:

• If Di is not reduced then qs(xi) remains unchanged

• If Di is pruned and the search leads to a failure, lf(xi) is set to f and qs(xi) is updated by:

qs(xi) = (1− α)× qs(xi) + α× r

The step-size α, initialized to 0.4, is updated to α− 10−6 if α > 0.06. The value of the reward r is given by:

r =
1

f − lf(xi) + 1

• If Di is pruned and the search does not lead to a failure, qs(xi) is also updated by:

qs(xi) = (1− α)× qs(xi) + α× r

In this case, the reward value is defined by:

r =
0.9

f − lf(xi) + 1

CHB in Gecode selects the variable with the highest Q-score.

4.5 Last Conflict (LC)
Last Conflict (LC) reasoning [25] aims to better identify and exploit nogoods in a binary tree search, where each node has a first
branch corresponding to a positive decision (xi = vi) and eventually a second branch with a negative decision (xi 6= vi).

If a positive decision xi = vi leads to a conflict then LC records the variable xi as a conflicting variable. The value vi is removed
from the domain Di of xi. After developing the negative branch xi 6= vi, LC continues the search by assigning a new value v′i to xi
instead of choosing a new decision variable. This treatment is repeated until a successful assignment of xi is achieved. In this case,
the variable xi is unrecorded as a conflicting one and the next decision variable is decided by an auxiliary variable ordering heuristic.
Hence, this last one is used when no conflicting variable is recorded by LC.

4.6 Conflict Order Search (COS)
Conflict Order Search (COS) [11] is intended to focus the search on the variables which lead to recent conflicts. When a branching
on a variable xi fails, xi is stamped by the total number of failures since the beginning of the search (the initial stamp value of each
variable is 0). COS prefers the variable with the highest stamp value. An auxiliary heuristic is used if all the unassigned variables
have the stamp value 0.

4.7 Branching Heuristics for the Satisfiability Problem
In the context of the satisfiability problem, modern solvers based on Conflict-Driven Clause Learning (CDCL) [10, 31, 33] employ
variable branching heuristics correlated to the ability of the variable to participate in producing learnt clauses when conflicts arise (a
conflict is a clause falsification). The Variable State Independent Decaying Sum (VSIDS) heuristic [33] maintains an activity value
for each Boolean variable. The activities are modified by two operations: the bump (increase the activity of variables appearing in
the process of generating a new learnt clause when a conflict is analyzed) and the multiplicative decay of the activities (often applied
at each conflict). VSIDS selects the variable with the highest activity to branch on.

Recently, a conflict history based branching heuristic (CHB) [28], based on the exponential recency weighted average, was
introduced. It rewards the activities to favor the variables that were recently assigned by decision or propagation. The rewards
are higher if a conflict is discovered. The Learning Rate Branching (LRB) heuristic [29] extends CHB by exploiting locality and
introducing the learning rate of the variables.
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4.8 Discussion
Reinforcement learning techniques have already been studied in constraint programming. The multi-armed bandit framework is used
to select adaptively the consistency level of propagation at each node of the search tree [2]. A linear regression method is used to
learn the scoring function of value heuristics [9]. Rewards are calculated and used to select adaptively the backtracking strategy
[1]. Learning process based on Least Squares Policy Iteration technique is used to tune adaptively the parameters of stochastic local
search algorithms [3].

More recently, upper confidence bound and Thompson Sampling techniques are employed to select automatically a variable
ordering heuristic for CSP, among a set of candidate ones, at each node of the search tree [44]. The considered candidate set contains
notably IBS, ABS and dom/wdeg. Knowing that no heuristic always outperforms another, Xia and Yap exploit reinforcement
learning (under the form of a multi-armed bandit) to choose the search heuristic to employ at each node of the search rather than
choosing a particular heuristic before the solving. More recently, Wattez et al. have proposed another MAB approach [42]. Like in
the work of Xia and Yap, each heuristic corresponds to an arm. In contrast, an new arm is chosen at each restart instead of each node.
On the other hand, in CHS, reinforcement learning allows to select the branching variable based on ERWA. Note also that CHS can
be used as an additional arm in the work of Xia and Yap while it is already exploited as an arm in [42].

To return to the heuristics detailed in this section, LC, COS and CHB are also conceptually interested in the search history as
CHS. They act directly on the variable scores while CHS considers this history by weighting the constraints that are responsible for
failures before scoring the variables. As an illustration, CHB in Gecode updates the Q-score values of variables according to ERWA
while CHS uses ERWA to update the weight of constraints to calculate the score of the variables. The update of the α parameter is
also different between CHS and CHB, especially during restarts.

Weight and score decaying is also used in other heuristics such as ABS. However, it is applied to the score of the variables and
not that of the constraints such as in CHS. It is also important to note that there is no decaying in CHB. Furthermore, CHS and
dom/wdeg calculate differently the score of the constraints leading to failures. In the first case, the score of the constraint is always
incremented by a constant value 1. In the second case, the new score is a tradeoff between the current one and the reward that varies
at each failure. Moreover, the scores of constraints are not decayed in dom/wdeg contrary to CHS. Finally, unlike LC and COS,
CHS does not require the use of an auxiliary heuristic.

5 Experimental Evaluation on CSP Instances
This section is devoted to the evaluation of the behavior of our heuristic when solving CSP instances (decision problem). We first
describe the experimental protocol we use. In subsection 5.2, we assess the sensitivity of our heuristic CHS to its parameters and
the benefits of smoothing and resetting. Afterwards, we compare CHS with state-of-the-art variable ordering heuristics in subsection
5.3, before studying the behavior of CHS when it is used jointly with LC or COS in subsection 5.4. Finally, in subsection 5.5, we
evaluate the practical interest of CHS in the particular case where the search is guided by a tree-decomposition.

5.1 Experimental Protocol
We consider all the CSP instances from the XCSP3 repository2 and the XCSP3 competition 20183, resulting in 16,947 instances.
XCSP3, for XML-CSP version 3, is an XML-based format to represent instances of combinatorial constrained problems. Our solvers
are compliant with the rules of the competition except that the global constraints cumulative, circuit and some variants of the
allDifferent constraint (namely except and list) or the noOverlap constraint are not supported yet. Consequently, from
the 16,947 obtained instances, we first discard 1,233 unsupported instances. We also remove 2,813 instances which are detected as
inconsistent by the initial arc-consistency preprocessing and having no interest for the present comparison. Finally, we have noted
that some instances appear more than once. In such a case, we keep only one copy. In the end, our benchmark contains 12,829
instances, including notably structured instances and instances with global constraints.

Regarding the solving step, we exploit MAC with restarts [27] before assessing the impact of our approach on a structural solving
method, namely BTD-MAC+RST+Merge [21]. Roughly speaking, BTD-MAC+RST+Merge differs from MAC by the exploitation
of the structure via the notion of tree-decomposition (i.e. a collection of subsets of variables, called clusters, which are arranged
in the form of a tree [36]). While the search performed by MAC considers at each step all the remaining variables, one performed
by BTD-MAC+RST+Merge only takes into account the unassigned variables of the current cluster. The clusters of the computed
tree-decomposition are processed according to a depth-first traversal of the tree-decomposition starting from a cluster called the root
cluster (see [21] for more details). For BTD-MAC+RST+Merge, the tree-decompositions are computed with the heuristic H5-TD-
WT [21]. The first root cluster is the cluster having the maximum ratio number of constraints to its size minus one. At each restart,
the selected root cluster is one which maximizes the sum of the weights of the constraints whose scope intersects the cluster. The
merging heuristic is the one provided in [21]. Note that these settings except the variable ordering heuristic correspond to those used
for the XCSP3 competitions 2017 and 2018 [15, 22, 23].

2http://www.xcsp.org/series
3http://www.cril.univ-artois.fr/XCSP18/
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MAC and BTD-MAC+RST+Merge use a geometric restart strategy based on the number of backtracks with an initial cutoff set to
100 and an increasing factor set to 1.1. In order to make the comparison fair, the lexicographic ordering is used for the choice of the
next value to assign. We consider the following heuristics dom/wdeg, wdegca.cd, ABS, IBS and CHB as implemented in Gecode.
For ABS, we fix the decay parameter γ to 0.999 as in [32]. Note that we do not exploit a probing step like one mentioned in [32].
So all the weights are initially set to 0. For CHB, we use the value parameters as given in [39]. We also introduce a new variant
dom/wdeg+s which we define as dom/wdeg where the weights of constraints are smoothed at each restart, exactly as in CHS. For
all the heuristics, ties (if any) are broken by using the lexicographic ordering.

We have written our own C++ code to implement all the compared variable ordering heuristics in this section, as well as the solvers
that exploit them (MAC and BTD). By so doing, we avoid any bias related to the way the heuristics and solvers are implemented.
In particular, the variable ordering heuristics are all implemented with equal refinement and care. Moreover, when comparing the
variable ordering heuristics for a given solver, the only thing which differs is the variable ordering heuristic. Indeed, we use exactly
the same propagators, the same value heuristic, etc. This ensures that we make a fair comparison. Finally, given a solver and a CSP
instance, we consider that a variable ordering heuristic h1 is better than another one h2 if h1 allows the solver to solve the instance
faster than h2. Indeed, the aim of variable ordering heuristic is to make a good tradeoff between the size of the explored search tree
and the runtime spent for choosing a relevant variable (remember that finding the best one is an NP-Hard task [30]). Since all the
other parts of the solver are identical, the solving runtime turns to be a relevant measure of the quality of this tradeoff. Thus, when
the comparison relies on a collection of instances, h1 is said better than h2 if it leads the solver to solve more instances than h2. If
both lead to solve the same number of instance, ties are broken by considering the smaller cumulative runtime. At the end, note that
our protocol is consistent with the recommendations outlined in [20].

The experiments are performed on Dell PowerEdge R440 servers with Intel Xeon Silver 4112 processors (clocked at 2.6 GHz)
under Ubuntu 18.04. Each solving process is allocated a slot of 30 minutes and at most 16 GB of memory per instance. In the
following tables, #solved (abbreviated sometimes #solv.) denotes the number of solved instances for a given solver and time is the
cumulative runtime, i.e. the sum of the runtime over all the considered instances.

5.2 Impact of CHS Settings
In this part, we assess the sensitivity of CHS with respect to the chosen values for α0 or δ. First, we observe the impact of α0 value.
Hence, we fix δ to 10−4 to start the search by considering the variable degrees then quickly exploit ERWA-based computation. We
then vary the value of α0.

Table 1: Number of instances solved by MAC+CHS depending on the value of α0 (between 0.1 and 0.9) for consistent instances (SAT), inconsistent
ones (UNSAT), and all the instances (ALL) and the cumulative runtime (in hours) of MAC+CHS for all the instances.

α0
# solved instances time (h)SAT UNSAT ALL

0.1 6,530 4,212 10,742 1,038.89
0.2 6,505 4,206 10,711 1,049.55
0.3 6,505 4,203 10,708 1,052.04
0.4 6,493 4,204 10,697 1,056.14
0.5 6,509 4,202 10,711 1,058.13
0.6 6,487 4,205 10,692 1,062.14
0.7 6,504 4,207 10,711 1,055.46
0.8 6,479 4,197 10,676 1,072.28
0.9 6,473 4,203 10,676 1,071.43

VBS 6,691 4,242 10,933 940.21

Table 1 presents the number of instances solved by MAC depending on the initial value of α0 and the corresponding cumulative
runtime. Here, we first vary α0 between 0.1 and 0.9 with a step of 0.1. We also provide the results of the Virtual Best Solver (VBS).
The VBS is a theoretical/virtual solver that returns the best answer obtained by MAC with a given α0 among those considered here.
Roughly, it allows to count the number of the instances solved at least one time when varying the value of α0, while considering
the smaller corresponding runtime. Table 1 shows that the results obtained for the different values of α0 are relatively close to each
others. However, we can observe that the value α0 = 0.1 allows MAC to solve more instances (10,742 solved instances with a
cumulative solving time of 1,038.89 hours) than the other considered values. More precisely, MAC with CHS and α0 = 0.1 solves
at least 31 additional instances. The worst cases are α0 = 0.8 and α0 = 0.9 with 10,676 instances solved respectively in 1,072 and
1,071 hours. If we discard the value 0.1 for α0, we observe that the results for the remaining considered values are quite close. This
shows that CHS is relatively robust w.r.t. the α0 parameter. Moreover, we can also remark that these observations are still valid if we
focus on SAT instances (respectively on UNSAT instances). For example, the choice α0 = 0.1 leads to solving the largest number of
SAT instances (resp. UNSAT instances), exactly 6,530 instances (resp. 4,212 instances). Figures 1 and 2 also show that α0 = 0.1
is the best choice among the experimented values. Indeed, we can note that the curve corresponding to α0 = 0.1 is almost always
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above the others in both figures. These two figures also highlight the robustness of CHS w.r.t. the value of α0 since all the curves are
quite close.
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Figure 1: Number of solved instances as a function of the elapsed time for α0 varying between 0.1 and 0.9 and the VBS, for a runtime between 1 s
and 60 s.
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Figure 2: Number of solved instances as a function of the elapsed time for α0 varying between 0.1 and 0.9 and the VBS, a for runtime between 60 s
and 1,800 s.

Since the value α0 = 0.1 leads to the best result, a natural question is what happens if we consider the value α0 = 0 (which is
normally a forbidden value since 0 < α < 1). So we run MAC+CHS with α0 = 0. In this case, the number of solved instances
decreases significantly since only 9,069 instances are solved. At the same time, the runtime is almost doubled with a cumulative
runtime of 1,921.35 hours. Consequently, the benefit of CHS is highly related to the tradeoff between the rewards of the past conflicts
and the reward of the last one and so choosing a positive value for α0 is crucial. The impact of this tradeoff is reinforced by the fact
that MAC+CHS with α0 = 1 (a forbidden value too) performs worse than most of the combinations of MAC with α0 between 0.1
and 0.9. Indeed, it only solves 10,667 instances while spending more time (1,089.37 h).

Likewise, we can wonder what happens if we choose a value slightly different from 0.1. Hence, we now vary α0 between 0.025
and 0.15 with a step of 0.025 (see Table 2). Again, MAC+CHS with α0 = 0.1 turns to be the best case by solving more instances
and obtaining the smallest cumulative runtime. Furthermore, the robustness of CHS w.r.t. the α0 parameter is strengthened since we
can note that the other values of α0 obtain close results.

Regarding the Virtual Best Solver (VBS) in Table 1, we note that it can solve 191 additional instances than MAC+CHS when
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Table 2: Number of instances solved by MAC+CHS depending on the value of α0 (between 0.025 and 0.15) for consistent instances (SAT),
inconsistent ones (UNSAT), and all the instances (ALL). and the cumulative runtime (in hours) of MAC+CHS for all the instances.

α0
# solved instances time (h)SAT UNSAT ALL

0.025 6,507 4,202 10,709 1,061.07
0.05 6,512 4,212 10,724 1,058.89
0.075 6,500 4,204 10,704 1,064.61
0.1 6,530 4,212 10,742 1,038.89
0.125 6,519 4,203 10,722 1,078.10
0.15 6,503 4,207 10,710 1,061.81

α0 = 0.1 with the best runtime of 940.21 h. We can also remark that most of these additional instances are consistent (161 SAT
instances vs. 30 UNSAT). If we consider the results instance per instance, we observe that 10,478 instances are solved whatever
the chosen value for α0, which shows again the robustness of CHS w.r.t. the value of α0. Furthermore, among the 455 remaining
ones, there exists 106 instances which are only solved by MAC with a particular value for α0 (of course this value depends on the
considered instance) and for 32% of the instances, MAC needs more than 1,200 seconds in order to solve each of them. Accordingly,
some instances seem to be harder to solve. Finally, we observe that these 455 instances belong to several families. Indeed, more than
half of the considered families are involved here, which shows that this phenomenon is more related to the instances themselves than
to a particular feature of their family.

Now, we set α0 to 0.1 and evaluate different values of δ (see Table 3). The observations are similar to those presented previously,
showing the robustness of CHS regarding δ. Also, it is interesting to highlight that MAC+CHS with δ = 0 solves 10,683 instances
while it solves 10,742 instances if δ = 10−4. This illustrates the relevance of introducing δ in CHS since it allows to solve 59 more
instances with this last setting.

Table 3: Impact of the value of δ on MAC+CHS regarding the number of solved instances and the cumulative runtime in hours.

δ SAT UNSAT ALL time (h)
0 6,479 4,204 10,683 1,079.25
10−5 6,519 4,207 10,726 1,043.53
10−4 6,530 4,212 10,742 1,038.89
10−3 6,508 4,199 10,707 1,044.41

Table 4 gives the results of MAC+CHS (α0 = 0.1, δ = 10−4) with smoothing (+s) the constraint scores or without (-s) and/or
with resetting (+r) the value of α to 0.1 at each new restart or without (-r). The observed behaviors clearly support the importance
of smoothing and restarts for CHS. For example, MAC+CHS+s-r solves 13 less instances than MAC+CHS, while MAC+CHS-s+r
solves 84 instances less.

Table 4: Number of instances solved by MAC with CHS with/without smoothing and reset of α and cumulative runtime in hours.

Solver SAT UNSAT ALL time (h)
MAC+CHS (+s+r) 6,530 4,212 10,742 1,038.89
MAC+CHS+s-r 6,520 4,209 10,729 1,043.95
MAC+CHS-s-r 6,484 4,199 10,683 1,064.20
MAC+CHS-s+r 6,482 4,176 10,658 1,067.72

Finally, these results are globally consistent with those presented in [16]. Indeed, except that the best value of α0 is now 0.1
instead of 0.4 in [16], we observe the same trends. The benchmark used in [16] was a subset of our initial benchmark. If we proceed
similarly by removing arc-inconsistent instances, we obtain a benchmark with 7,916 instances. From this benchmark, MAC solved
respectively 6,700 and 6,706 instances with 0.1 and 0.4 for α0 in [16], while in the current experiments, it succeeds in solving 6,837
and 6,829 instances. In both cases, the gap between the two values of α0 is very small. Note that the increase in the number of solved
instances is mainly related to some improvements in our implementation and the difference of hardware configurations. Both impact
all the heuristics in the same manner.

5.3 CHS vs. Other Search Heuristics
Now, we compare CHS to other search strategies from the state-of-the-art, namely dom/wdeg, wdegca.cd, ABS, IBS and CHB. In the
remaining part of the paper, by default, we consider CHS with α0 = 0.1 and δ = 10−4. We also consider the variant dom/wdeg+s
that we introduced for dom/wdeg.
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Figure 3 presents the number of solved instances as a function of the elapsed time for each considered heuristic. Since no
heuristic outperforms another for all instances or families of instances, Tables 5-8 give some details for each family of instances.
They allow to have a better insight of the kind of instances for which CHS is relevant. More accurately, for each family, they provide
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Figure 3: Number of solved instances as a function of the elapsed time (with a logarithmic scale) for the considered heuristics (namely CHS,
dom/wdeg+s, dom/wdeg, wdegca.cd, ABS, CHB and IBS) and the VBS based on these seven heuristics.

on rows C the number of instances solved by MAC with each considered heuristic (excluding IBS4) and the cumulative runtime for
solving them for each heuristic, and on rows T the total number of instances of the family, the number of solved instances and the
corresponding cumulative runtime for each heuristic. For each row, we write in bold the result of the best heuristic. As mentioned
in our experimental protocol and like the solver competitions, we first consider the number of solved instances and we break ties by
considering the cumulative runtime (given in seconds, except for the total runtimes which are expressed in hours). We only provide
two digits after the decimal dot when the runtime does not exceed 100 seconds. Beyond, such details do not bring a significant
information. We divide the instance families into three categories: academic, real-world and XCSP3 2018 competition. For that, we
use the labeling from the XCSP3 repository.

From Figure 3 and Tables 5-8, it is clear that MAC with CHS performs better than any other heuristics whether in terms of the
number of solved instances or runtime. Indeed, for example, dom/wdeg is the heuristic closest to CHS but leads to solve 92 instances
less. At the same time, CHS solves 127 instances more than MAC+dom/wdeg+s and 174 more than MAC+wdegca.cd. Likewise, it
solves 134 additional instances w.r.t. MAC+ABS.

Now, if we consider the heuristic CHB which is based on conflict history like CHS, the gap with CHS is even greater (213
instances). This last result shows that the calculation of weights by ERWA on the constraints (as done in CHS) is more relevant than
its calculation on the variables (as done in CHB). Note that the poor score of IBS is mainly related to the estimation of the size of
the search tree (i.e. the product of the domain sizes [35]). In fact, we observe that, for many instances, the value of the estimation
exceeds the capacity of representation of long double in C++. Finally, these trends are still valid if we focus on SAT instances
or UNSAT ones.

Interestingly, whatever the value of α0, MAC with CHS remains better than all its competitors. Indeed, the worst case is observed
when the value of α0 is equal to 0.8 or 0.9 with 10,676 solved instances. This observation also holds for the version of CHS in which
we disable the smoothing or the resetting of α. This clearly highlights the practical interest of our approach.

If we look at the results more closely, i.e. for each family (see Tables 5-8), we observe that no heuristic dominates the others.
Indeed, if CHS is the heuristic that leads most often to the best results (for 13 families), the other heuristics are close (notably 10
families for wdegca.cd, ABS and CHB). This makes the choice of a particular heuristic difficult, as it is highly dependent on the
instance or the family of instances to be processed. This probably explains the gap between VBS and MAC with any heuristic (e.g.
10,982 solved instances for the VBS against 10,812 for MAC with CHS). Curiously, dom/wdeg+s only ranks first for 3 families
while being globally ranked at the third place. As CHS, it rarely performs significantly worse than the other heuristics.

To illustrate this phenomenon, let us consider the difference between the number of instances solved by the VBS and the cor-
responding number for MAC, for each family, with each heuristic. This number can be seen as a measure of the robustness of the
heuristic. Table 9 provides the mean and the standard deviation of this difference for each heuristic. It shows that CHS is the most
robust heuristic by obtaining the smallest mean and standard deviation.

4Given the poor results of MAC with IBS, including IBS leads to a less relevant comparison on instances solved by MAC with each heuristic since it significantly
decreases the number of such instances.
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Table 9: Mean and standard deviation of the difference between the number of instances solved by the VBS and the corresponding number for MAC
with each heuristic.

CHS dom/wdeg+s dom/wdeg wdegca.cd ABS CHB
Mean 5.11 7.38 6.75 8.21 7.50 8.91

Standard deviation 9.25 13.93 11.17 15.98 14.91 19.11

Finally, our observations are consistent with ones in [16]. In particular, MAC clearly performs better with CHS than with any
other heuristic, notably the two powerful and popular variable ordering heuristics dom/wdeg and ABS. The gap between CHS and
the other heuristics has widened with the increase in the number of instances taken into account.

5.4 Combination with LC and COS
LC and COS are two branching strategies based on conflicts which require an auxiliary variable ordering heuristic in order to choose
a variable when no conflict can be exploited. In this subsection, we study the behavior of CHS and some heuristics of the state-of-
the-art when they are used jointly with LC or COS. We only keep the three best heuristics according to the results of the previous
subsection, namely dom/wdeg+s, dom/wdeg and ABS.
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Figure 4: Number of solved instances as a function of the elapsed time (with a logarithmic scale) for LC with the heuristics CHS, dom/wdeg+s,
dom/wdeg or ABS.

First, we consider the case of LC. Figure 4 presents the number of solved instances as a function of the elapsed time for LC
combined with each considered heuristic. As a first observation, we can note that using LC does not change the ranking obtained in
the previous subsection. Namely, LC combined with CHS leads to the best results followed by dom/wdeg+s, dom/wdeg and ABS.
Indeed, as we can see in Table 10, MAC with LC and CHS solves more instances and solves them more quickly than MAC with LC
and any other heuristic. Moreover, for any considered heuristic h, we can also remark that MAC with LC and h performs better and
faster than MAC with h. For instance, MAC with LC and CHS solves 10,812 in 1,017.03 hours against 10,742 instances solved in
1,038.89 hours for MAC with CHS. We can also observe that the gain in the number of solved instances thanks to MAC with LC and
h w.r.t. MAC with h varies according to h (70 instances for CHS and 110 instances for ABS). This probably reflects the fact that the
less efficient the heuristic is, the easier it is to solve additional instances. To this end, LC with CHS turns to be the most interesting
variable ordering heuristic among all the heuristics we consider in our experiments.

Now, we assess the behavior of MAC when using COS with any auxiliary heuristic among CHS, dom/wdeg+s, dom/wdeg and
ABS. As shown in Figure 5 and Table 10, combining COS with any heuristic leads to decrease significantly the ability of MAC to
solve instances. Indeed, we can observe that MAC using COS and any heuristic solves at least 346 instances less than MAC using
solely the auxiliary heuristic. Thus, if the ranking remains the same, the gap between MAC with COS and CHS and MAC with COS
and any other auxiliary heuristic is narrower (from 92 instances when the heuristics are exploited alone to 16 instances with COS).
A possible explanation of this behavior is that MAC only exploits the auxiliary heuristic when there is no more variable appearing in
conflicts. This occurs at the beginning of the search when no conflict has been encountered yet or when all the variables appearing
in past conflicts are assigned. Clearly, the first case concerns few nodes in the search tree. For the second case, it may be the same
too as soon as many variables are involved in the encountered conflicts. In addition, a potential drawback of COS is that the conflicts

16



exploited by COS may be old and so have less sense at some steps of the search.
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Figure 5: Number of solved instances as a function of the elapsed time (with a logarithmic scale) for COS with the heuristics CHS, dom/wdeg+s,
dom/wdeg or ABS.

Table 10: Number of instances solved by MAC with LC/COS with any auxiliary heuristic among CHS, dom/wdeg+s, dom/wdeg or ABS, and
cumulative runtime in hours.

Auxiliary LC COS
heuristic #solved time (h) #solved time (h)

CHS 10,812 1,017.03 10,281 1,363.86
dom/wdeg+s 10,752 1,057.91 10,265 1,368.66
dom/wdeg 10,741 1,067.28 10,259 1,367.17
ABS 10,718 1,090.23 10,262 1,368.99

5.5 CHS and Tree-Decomposition
We now assess the behavior of CHS when the search is guided by a tree-decomposition. Studying this question is quite natural since
CHS aims to exploit the structure of the instance, but in a way different from what the tree-decomposition does. With this aim in
view, we consider BTD-MAC+RST+Merge [21] and the heuristics CHS, dom/wdeg+s, dom/wdeg and ABS combined or not with
LC. As shown in Figure 6 and Table 11, the trends observed for MAC are still valid for BTD-MAC+RST+Merge.

Table 11: Number of instances solved by BTD-MAC+RST+Merge with the heuristics CHS, dom/wdeg+s, dom/wdeg and ABS combined or not
with LC , and cumulative runtime in hours.

(Auxiliary) without LC with LC
heuristic #solved time (h) #solved time (h)

CHS 10,770 1,035.59 10,839 1,011.22
dom/wdeg+s 10,712 1,065.01 10,805 1,032.30
dom/wdeg 10,672 1,089.00 10,767 1,061.63
ABS 10,650 1,082.71 10,705 1,093.49

Indeed, the solving is more efficient with CHS than with any other used heuristic by at least 58 additional instances. For example,
BTD-MAC+RST+Merge with CHS solves 10,770 instances (in 1,035 h) against 10,712 instances (in 1,065 h) for dom/wdeg+s.
Moreover, we can note that using BTD-MAC+RST+Merge instead of MAC does not change the ranking of the heuristics in terms of
the number of solved instances or the cumulative runtime.

Likewise, we can make the same observations if we exploit LC (see Figure 7 and Table 11). Above all, BTD-MAC+RST+Merge
with LC and CHS turns out to be more efficient than MAC with LC and any auxiliary heuristic. For example, it solves 27 additional
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Figure 6: Number of instances solved by BTD-MAC+RST+Merge as a function of the elapsed time (with a logarithmic scale) with the heuristics
CHS, dom/wdeg+s, dom/wdeg or ABS.
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Figure 7: Number of instances solved by BTD-MAC+RST+Merge as a function of the elapsed time (with a logarithmic scale) with LC combined
with the heuristics CHS, dom/wdeg+s, dom/wdeg or ABS.

instances compared to MAC with LC and CHS. All these observations show that exploiting both CHS and tree-decomposition may
be of interest and that these two strategies can be complementary.

Finally, these results are consistent with the ones in [16]. They are also consistent with ones of the XCSP3 competition 2018. For
instance, BTD-MAC+RST+Merge participated in the mini-solvers track of the competition by using respectively dom/wdeg (for the
solver miniBTD [23]) and CHS (for the solver miniBTD 12 [15]) as variable ordering heuristic. miniBTD 12 finished in the second
place by solving 79 instances while miniBTD was ranked third with 74 solved instances.

6 Experimental Evaluation on COP Instances
This section is devoted to the evaluation of the behavior of our heuristic when solving COP instances (optimization problem). Note
that the constraint optimization problem (COP) differs from the constraint satisfaction problem by only the addition of an objective
function to optimize. So solving a COP instance consists in assigning all the variables while satisfying all the constraints and
optimizing the objective function. It is an NP-hard task [37].

We first describe the experimental protocol we use. Then, in subsection 6.2, we assess the sensitivity of our heuristic CHS to its
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parameters and the benefits of smoothing and resetting. Finally, we compare CHS with state-of-the-art variable ordering heuristics in
subsection 6.3.

6.1 Experimental Protocol
We consider the COP instances from the 2019 XCSP3 competition5. Like for CSP instances, we discard 36 instances containing
some global constraints which are not handled by our library yet. In the end, our benchmark contains 264 instances, including
notably structured ones and instances with global constraints.

The experiments are performed in the same conditions as for CSP instances. In particular, we use the same value heuristic, the
same settings for variable ordering heuristics, restarts, . . . . Regarding the solving step, we exploit a branch and bound algorithm
based on MAC with restarts and denoted MAC-BnB. We distinguish three statuses when solving a COP instance. If the solver finds
an optimal solution and proves the optimality within the allocated time slot (30 minutes), the instance has the status OPT meaning
that it is has been optimally solved. However, if the solver has found a solution but cannot establish its optimality, the instance has the
status SAT meaning that a solution has been found in the CSP sense but with no guarantee with respect to the objective function. In
such a case, the solver has only produced an upper bound (resp. a lower bound) if the instance aims to minimize (resp. maximize) the
objective function. Finally, if the solver proves that the instance has no solution, the instance has the status UNSAT. In the following,
an instance is said solved if it has the status OPT or UNSAT.

6.2 Impact of CHS Settings
In this part, we assess the sensitivity of CHS with respect to the chosen values for α0 or δ when solving COP instances. First, we
study the impact of α0 value. With this aim in view, we set δ to 10−4 and then vary the value of α0 between 0.1 and 0.9 with a step
of 0.1.

Table 12: Number of instances having the status OPT, UNSAT or SAT depending on the value of α0 (between 0.1 and 0.9) and the cumulative
runtime (in hours) for all the instances.

α0
# instances time (h)OPT UNSAT SAT

0.1 119 1 86 67.48
0.2 121 1 83 66.75
0.3 124 1 80 66.10
0.4 126 1 78 62.38
0.5 124 1 73 66.31
0.6 120 1 84 68.18
0.7 120 1 83 68.73
0.8 113 1 91 70.65
0.9 117 1 85 70.08

VBS 140 1 66 59.04

Table 12 provides the number of instances having the status OPT, UNSAT or SAT depending on the initial value of α0 and
the corresponding cumulative runtime. We also provide the results of the Virtual Best Solver (VBS) built on the basis of this nine
combinations of MAC-BnB and CHS. Table 12 shows that the results obtained for the different values of α0 are relatively close to
each others. Indeed, if we consider the number of solved instances, the best combination (α0 = 0.4) solves in average 6 additional
instances and the gap with the worst one is 13 instances. Regarding the runtime, MAC-BnB and CHS with α0 = 0.4 correspond
again to the best combination with a cumulative runtime of 62.38 h. The other combinations are generally 5% slower, except for
the values 0.8 and 0.9 of α0 for which the rate is about 10%. Globally, these results are consistent with ones obtained when solving
CSP instances and show again the robustness of CHS with respect to the value of α0. This robustness is also highlighted by the fact
that all the curves in Figure 8 are quite close. Moreover, from this figure, we can note that α0 = 0.4 is the best choice among the
experimented values. Indeed, the corresponding curve is almost always above the others.

Regarding the Virtual Best Solver (VBS) in Table 12, we note that it can solve 14 additional instances than MAC-BnB and CHS
with α0 = 0.4 while saving 3.34 hours. If we consider the results instance per instance, we observe that 103 instances among the
ones solved by the VBS are solved whatever the chosen value for α0. Furthermore, 20 instances among the 38 remaining ones are
solved by more than half of the combinations. Finally, the 18 remaining instances seem harder to solve with an average runtime for
the VBS about 819 seconds.

Now, we set α0 to 0.4 and consider different values of δ (see Table 13). The observations are similar to those presented previously,
showing the robustness of CHS regarding δ. It turns out that using a non-zero values for δ allows MAC-BnB to perform better. This

5http://www.cril.univ-artois.fr/XCSP19
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Figure 8: Number of solved COP instances as a function of the elapsed time for α0 varying between 0.1 and 0.9 and the VBS.

shows the relevance of introducing δ in CHS. Finally, like for the CSP solving, the value 10−4 leads to obtain the best results in terms
of the number of solved instances as well as the runtime.

Table 14 gives the results of MAC-BnB+CHS (α0 = 0.4, δ = 10−4) with smoothing (+s) the constraint scores or without
(-s) and/or with resetting (+r) the value of α to 0.4 at each new restart or without (-r). The observed behaviors clearly support
the importance of smoothing and restarts for CHS. For example, MAC-BnB with CHS+s-r solves 5 less instances than MAC-BnB
with CHS, while MAC-BnB with CHS-s-r solves 11 instances less. In addition, it can be noted that removing the smoothing or the
resetting lead to an increase in runtime.

Table 13: Impact of the value of δ regarding the number of instances having the status OPT, UNSAT or SAT and the cumulative runtime in hours.

δ
# instances time (h)OPT UNSAT SAT

0 120 1 84 67.89
10−5 123 1 82 67.21
10−4 126 1 78 62.38
10−3 121 1 84 68.47

Table 14: Number of instances which are solved optimally (OPT), proved as inconsistent (UNSAT) or for which a solution is found (SAT) with
CHS with/without smoothing and reset of α and the cumulative runtime (in hours) for all the instances.

Variant # instances time (h)OPT UNSAT SAT
CHS(+s+r) 126 1 78 62.38
CHS+s-r 121 1 84 66.82
CHS-s-r 115 1 81 69.73
CHS-s+r 116 1 82 70.16

6.3 CHS vs. Other Search Heuristics
In this part, we compare CHS (with α0 = 0.4 and δ = 10−4) to other search strategies from the state-of-the-art, namely dom/wdeg,
wdegca.cd, ABS and CHB. We also consider the variant dom/wdeg+s that we introduced for dom/wdeg.

Figure 9 presents the number of solved instances as a function of the elapsed time for each considered heuristic. Clearly, CHS
turns to be the more efficient heuristics. Indeed, MAC-BnB with CHS solves at least 13 additional instances than with any other
considered heuristic while performing faster. More interestingly, CHS outperforms CHB with 49 additional solved instances. Nev-
ertheless, no heuristic outperforms another for all instances or families of instances. So, Tables 15 and 16 give some details for
each family of instances considered in the competition. They allow to have a better insight of the kind of instances for which CHS
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is relevant. Note that we do not consider CHB in order to have a relevant comparison for instances which are solved with all the
heuristics. Indeed, considering CHB dramatically reduces the number of instances solved by all the heuristics. Like for the decision
problem, CHS is not always the better heuristic, but, it turns to be the more robust one. Finally, we can also remark that whatever the
values chosen for α0 or δ among the considered one, CHS performs better than the state-of-the-art heuristics. This observation still
holds if CHS does not exploit smoothing and/or reset of α.
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Figure 9: Number of solved instances as a function of the elapsed time for the considered heuristics (namely CHS, dom/wdeg+s, dom/wdeg,
wdegca.cd, and ABS) and the VBS based on these five heuristics.

7 Conclusion
We have proposed CHS, a new variable ordering heuristic for CSP based on the search history and designed following techniques
inspired from reinforcement learning. The experimental results confirm the relevance of CHS, which is competitive with the most
powerful heuristics, when implemented in solvers based on MAC or tree-decomposition exploitation. Our experiments also shows
that CHS turns to be relevant for solving COP instances.

The experimental study suggests that the initial value of α parameter value could be refined. We will explore the possibility of
defining its value depending on the instance to be solved. For example, we will look for probing techniques to fix its appropriate
value. Furthermore, similarly to the ABS heuristic, we will also consider including information provided by filtering operations in
CHS. Finally, we will measure the impact of CHS on solving other problems under constraints, such as counting and optimization
when modeled as weighted CSP.
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