Performance of Vehicular Visible Light Communications under the Effects of Atmospheric Turbulence with Aperture Averaging - Aix-Marseille Université Accéder directement au contenu
Article Dans Une Revue Sensors Année : 2021

Performance of Vehicular Visible Light Communications under the Effects of Atmospheric Turbulence with Aperture Averaging

Résumé

In this paper, we investigate the performance of a vehicular visible light communications (VVLC) link with a non-collimated and incoherent light source (a light-emitting diode) as the transmitter (Tx), and two different optical receiver (Rx) types (a camera and photodiode (PD)) under atmospheric turbulence (AT) conditions with aperture averaging (AA). First, we present simulation results indicating performance improvements in the signal-to-noise ratio (SNR) under AT with AA with increasing size of the optical concentrator. Experimental investigations demonstrate the potency of AA in mitigating the induced signal fading due to the weak to moderate AT regimes in a VVLC system. The experimental results obtained with AA show that the link’s performance was stable in terms of the average SNR and the peak SNR for the PD and camera-based Rx links, respectively with <1 dB SNR penalty for both Rxs, as the strength of AT increases compared with the link with no AT.
Fichier principal
Vignette du fichier
2021 Performance of Vehicular Visible Light Communications under the Effects of Atmospheric Turbulence with Aperture Averaging - Sensors.pdf (2.76 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03341339 , version 1 (10-09-2021)

Licence

Paternité

Identifiants

Citer

Elizabeth Eso, Zabih Ghassemlooy, Stanislav Zvanovec, Juna Sathian, Mojtaba Mansour Abadi, et al.. Performance of Vehicular Visible Light Communications under the Effects of Atmospheric Turbulence with Aperture Averaging. Sensors, 2021, 21 (8), pp.2751. ⟨10.3390/s21082751⟩. ⟨hal-03341339⟩

Collections

UNIV-AMU
19 Consultations
25 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More