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CONSTRUCTION OF LABYRINTHS IN PSEUDOCONVEX DOMAINS

S. CHARPENTIER,  L. KOSIŃSKI

Abstract. We build in a given pseudoconvex (Runge) domainD of CN anO(D)-convex set
Γ, every connected component of which is a holomorphically contractible (convex) compact
set, enjoying the property that any continuous path γ : [0, 1) → D with limr→1 γ(r) ∈ ∂D
and omitting Γ has infinite length. This solves a problem left open in a recent paper by
Alarcón and Forstnerič.

1. Introduction

Alarcón and Forstnerič recently proved that the Euclidean ball BN of CN , N > 1, admits
a nonsingular holomorphic foliation by complete properly embedded holomorphic discs [1,
Theorem 1]. They asked the natural question whether their result extends to any Runge
pseudoconvex domains. As explained in [1, Remark 1], the main obstruction that appears
is how to construct a suitable labyrinth in such a domain. Here and in the sequel we call
labyrinth of a given pseudoconvex domain D in CN a set Γ in D with the property that any
continuous path γ : [0, 1) → D, with limr→∞ γ(r) ∈ ∂D, whose image does not intersect Γ,
has infinite length. Such sets were already built in pseudoconvex domains by Globevnik, by
properly embedding the pseudoconvex domain as a submanifold of C2N+1 [7], thus reducing
the problem to a construction in BN [6]. However Globevnik’s construction in [6, 7] did
not provide with good topological properties of the connected components of the labyrinth,
such as convexity or holomorphic contractibility. In [3] the authors simplified Globevnik’s
construction building a labyrinth in BN whose connected components are balls in suitably
chosen affine real hyperplanes. Alarcón and Forstnerič used a slight modification of this
construction to obtain [1, Theorem 1].

The main aim of this short note is to overcome the difficulty pointed out in [1, Theorem
1] and extend the construction made in [3] to pseudoconvex domains.

Theorem 1.1. Let D be a pseudoconvex domain in CN and let (Dn) be a normal exhaustion
of D by smooth strongly pseudoconvex domains that are O(D)-convex. Let also (Mn) be
a sequence of positive numbers. Then there are holomorphically contractible compact sets
Γn ⊂ Dn+1\Dn such that Dn∪

⋃m
j=n Γj is O(D)-convex for every m ≥ n, and any continuous

path connecting ∂Dn to ∂Dn+1 and avoiding Γn has length greater than Mn.
Moreover, if D is Runge then it can be additionally assumed that each connected component

of Γ is the image of a (2N − 1)-convex body under an automorphism of CN .

It will follow from the proof that the (2N − 1)-convex bodies appearing in the theorem
above are R-linear transformations of (2N−1)-dimensional balls. Proceeding as in [1] one can
use Theorem 1.1 to obtain the analogue of [1, Theorem 1] for Runge pseudoconvex domain,
and thus answer the question posed by the authors. This can also be used to extend from
the ball to any pseudoconvex domain some results related to Yang’s problem [9, 10], such as
those in [2] and [3].
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The proof of Theorem 1.1 consists of three steps: firstly, to slightly adapt the main
argument of [3] in order to build a suitable labyrinth in a strongly convex domain; secondly,
to make use of a result by Diederich, Fornæss and Wold [4] to perform the construction in
any strongly pseudoconvex domain, and thirdly, to exhaust the given pseudoconvex domain
by strongly pseudoconvex ones.

2. Proof of Theorem 1.1

For a pseudoconvex domain D of CN we denote by O(D) the space of holomorphic func-
tions on D.

Let us first recall some classical notions and results about polynomial and holomorphic
convexity. We refer the reader to Stout’s book [8]. Let K and L be compact subsets of
a pseudoconvex domain D of CN . We shall say that K and L are polynomially separated
(respectively holomorphically separated with respect to D - or simply O(D)-separated) if

there exists a holomorphic polynomial p (resp. a function f ∈ O(D)) such that p̂(K)∩ p̂(L)

is empty (resp. f̂(K)∩ f̂(L) = ∅). In particular if there exists a real hyperplane H such that
K is contained in one of the connected component of CN \H and L is contained in the other
one, then K and L are polynomially separated. In this case, we will simply say that K and
L are separated by a hyperplane. Note that if K and L are O(D)-separated with D = CN ,
then K and L are polynomially separated.

It follows from a classical result of Kallin [8, Theorem 1.6.19], that if K and L are
both polynomially convex (resp. O(D)-convex) and polynomially separated (resp. O(D)-
separated), then K ∪ L is polynomially convex (resp. O(D)-convex).

Let us now proceed with the proof of Theorem 1.1. As a first step, we shall state an
analogue of [3, Theorem 1.5] for strongly convex domains.

Lemma 2.1. Let D be a strongly convex domain in CN and let x ∈ ∂D. There exists a
neighborhood U of x such that for any M > 0 and any compact set K ⊂ D intersecting U ,
there exists a compact set Γ ⊂ D with the following two properties:

(i) Γ can be written as a finite union
⋃

i Γi, where each Γi is a convex body in a real
hyperplane, and any Γi is separated from

⋃
j<i Γj by a real hyperplane.

(ii) The length of any continuous path γ : [0, 1)→ D \ Γ, with limr→1 γ(r) ∈ ∂U ∩D and
such that γ(r0) ∈ K ∩ U for some r0 ∈ [0, 1) and γ(r) ∈ U for any r0 < r < 1, is greater
than M .

We only sketch the proof, as it is a simple modification of that of [3, Theorem 1.5]. It
makes use of [3, Lemma 2.1], that we recall below for notational convenience.

Lemma 2.2. There exist numbers m ∈ N, m ≥ 2, and c ∈ R, 0 < c < 1/2, depending
only on N , such that for any r > 0, there exist finitely many finite subsets F1, . . . , Fm of the
sphere S = bBN which satisfy the following:

(i) |p− q| ≥ r for all p, q ∈ Fj, p 6= q, j = 1, . . . ,m;
(ii) If F :=

⋃m
j=1 Fj then F 6= ∅ and dist(p, F ) ≤ cr for all p ∈ S.

Outline of the proof of Lemma 2.1. Up to a translation and an R-linear change of coordi-
nates we can assume that x = (1, 0, . . . , 0) ∈ C× CN−1 and that near x a defining function
r of ∂D is of the form r(z) = ‖z‖2 − 1 + o(‖z − 1‖2). Then there are open balls U1 and
U2 centered at x and a diffeomorphism Φ : U1 → U2 that maps U1 ∩ D onto U2 ∩ BN .
Upon shrinking the Ui’s, we can assume that Φ is arbitrarily close to the identity map in
C2-topology. Let U be any relatively compact ball in U1, x ∈ U .

Let m and c be given by Lemma 2.2. Following [3], we fix a sequence (sj) of positive
numbers, increasing, tending to 1 and such that

∑
j

√
sj − sj−1 =∞. We set sj,k := sj−1 +
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k(sj − sj−1)/(m + 1). Let Sj,k denote the set Φ−1(U2 ∩ sj,kS). Then there is a uniform
constant a > 0 such that any tangent ball to Sj,k of radius rj := a

√
sj − sj−1 (i.e. the ball

of a given radius centered at p ∈ Sj,k in the real affine hyperplane tangent to Sj,k at p) does
not intersect Sj,k+1, and any ball centered at Sj,k \U1 does not intersect U . We fix t > 1 such
that tc < 1/2. Let now F1, . . . , Fm be given by Lemma 2.2 applied to r := 2trj and denote
by Ej,k the set Φ−1(sj,kFk ∩ U2). Let us denote by Γj,k,p the tangent ball to Sj,k centered at
p ∈ Ej,k and radius rj. Observe that upon choosing Φ close enough to the identity map, in
a way which depends only on t > 1 - hence only on N , the sets Γj,k,p can be separated by
hyperplanes from

⋃
(j′,k′,p′)≺(j,k,p) Γj′,k′,p′ , where ≺ is the lexicographical order. Following the

proof from [3] one easily checks that Γ :=
⋃J

j=1

⋃
k,p Γj,k,p satisfies the desired properties for

some J large enough. �

Remark 2.3. (1) Observe that each connected component of Γ is the image of a (2N − 1)-
dimensional ball under an R-affine isomorphism.

(2) Note that setting Γ :=
⋃J ′

j=J

⋃
k,p Γj,k,p in the proof of Lemma 2.2, J and J ′ can be chosen

large enough so that Γ is contained in any given ε-neighbourhood of ∂D and separated by a
hyperplane from any given compact set in D.

The second step consists in extending [1, Theorem 1.5] to strictly pseudoconvex domains,
using Lemma 2.1. This is the purpose of the next lemma.

Lemma 2.4. Let D be a smooth strongly pseudoconvex domain in CN and let K be an O(D)-
convex compact subset of D. Then for any M > 0 there is a compact set Γ in D \K such
that Γ ∪K is O(D)-convex, with the property that any continuous path γ : [0, 1) → D \ Γ,
γ(0) ∈ K and limr→1 γ(r) ∈ ∂D, has length greater than M .

Γ can be chosen so that each of its connected components is holomorphically contractible.
If additionally D is Runge, the connected components of Γ can even be chosen as the images
of (2N − 1)-dimensional balls under R-affine isomorphisms and automorphisms of CN .

Proof. Let K be fixed as in the statement. By [4, Theorem 1.1], for any x ∈ ∂D there exist an
open ball U centered at x and a holomorphic embedding Φx : D → BN , Φx(x) = (1, 0, . . . , 0)
such that Φx(U) and some Γ′ ⊂ Φx(D) satisfy the conclusion of Lemma 2.1 for some constant
M ′ > 0. Upon choosing M ′ large enough - in a way which depends only on Φx, the set
Γ := Φ−1x (Γ′) satisfies that any continuous path γ in D \ Γ connecting K to U ∩ ∂D and
satisfying γ(r0) ∈ K ′ ∩ U for some r0 ∈ [0, 1) and γ(r) ∈ U , r0 < r < 1, has length greater
than M . Moreover, by Remark 2.3 (2) and Kallin’s theorem, Γ can also be chosen so that
Γ ∪K is O(D)-convex and contained in an ε-neighbourhood of ∂D for any given ε > 0.

Let us then consider a finite covering of ∂D by such open balls Ux1 , . . . , Uxk
. Upon slightly

shrinking the Uxj
’s, we may and shall assume that there exist δ, η > 0 and an open η-

neighbourhood V of ∂D such that the distance between V ∩ ∂Uxj
and V ∩ ∂(

⋃
i 6=j Uxi

) is

greater than δ for j = 1, . . . , k. From now on, let us fix K ′ = D\V . Observe that K ′∩Uj 6= ∅
for any j and that upon choosing η small enough, we shall assume that K ⊂ K ′. Let us
enumerate the sets Uxi

as a sequence (Uj) in such a way that for any i = 1, . . . , k there exist
infinitely many j such that Uj = Uxi

. We denote by Φj the mapping corresponding to Uj

and given by [4]. Following the above procedure with K ′ = D \ V , we build a labyrinth Γ1

in D and such that:

(i) Γ1 is contained in V and Γ1 ∪K is O(D)-convex;
(ii) Any continuous path γ in D \ Γ1 connecting K to U1 ∩ ∂D and satisfying γ(r0) ∈

K ′ ∩ U1 for some r0 ∈ [0, 1) and γ(r) ∈ U1, r0 < r < 1, has length greater than M .

Assuming that Γ1, . . . ,Γj have been built, we build Γj+1 in D such that:

(i) Γj+1 is contained in an ηj-neighborhood of ∂D, where ηj is the distance from ∂D to

Γ1 ∪ . . . ∪ Γj, and
⋃j+1

i=1 Γi ∪K is O(D)-convex;
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(ii) Any continuous path γ in D \Γj+1 connecting K to Uj+1∩∂D and satisfying γ(r0) ∈
K ′ ∩ Uj+1 for some r0 ∈ [0, 1) and γ(r) ∈ Uj+1, r0 < r < 1, has length greater than
M .

It is now easily checked that there exists J ∈ N big enough so that Γ :=
⋃J

j=1 Γj has the
desired property. Actually, it is enough to take J such that each Uxj

appears in a sequence
(Uj) at least n times, where nδ > M . Indeed, let γ be a path in D with γ(0) ∈ K and
limr→1 γ(r) ∈ ∂D. Since K ⊂ D \ V and γ is continuous, without loss of generality, we may
assume, up to re-parametrization, that γ([0, 1)) ⊂ V . If there exists 0 < r1 < r2 < 1 and
j ≤ J such that γ(r) ∈ Uj for any r1 ≤ r ≤ r2 and γ(r1) ∈ Vj−1 and γ(r2) ∈ Vj, where Vj is
the ηj-neighbourhood appearing in the construction, then the length of γ is clearly greater
than M . If not, it means that γ has to escape from some Uj as many times as it may have to
pass through some Γj. With J chosen as above, γ would then have to pass at least n times
from a Uj to another. Since the image of γ is in V and the distance between V ∩ ∂Uxj

and
V ∩ ∂(

⋃
i 6=j Uxi

) is greater than δ for j = 1, . . . , k, the length of γ has to bigger than nδ.

The O(D)-convexity of Γ∪K proceeds from the construction and Kallin’s theorem recalled
above. Observe that the last assertion of the lemma directly follows from the construction.

�

The third and last step is straightforward: Given D a pseudoconvex domain, we consider
an exhaustion (Dn) of D by O(D)-convex smooth strongly pseudoconvex domains (Runge
smooth strongly pseudoconvex domains if D is Runge) and inductively apply Lemma 2.4.
For the existence of such an exhaustion, we refer to [5, Subsection 2.3].
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[1] A. Alarcón, F. Forstnerič, A foliation of the ball by complete holomorphic discs, Math. Z. (2019),
https://doi.org/10.1007/s00209-019-02430-6.

[2] A. Alarcón, J. Globevnik, Complete embedded complex curves in the ball of C2 can have any topology,
Anal. PDE, 751 (2017), 1987–1999.
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