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Abstract 

The nematode worm C. elegans lends itself naturally to investigation of innate 

immunity, from the scale of molecules to the whole animal. Numerous studies have 

begun to reveal the complex interplay of signalling mechanisms that underlie host 

defence in C. elegans. We discuss here research that illustrates the connection 

between cell and tissue-level homeostatic mechanisms and the activation of innate 

immune signalling pathways. These are woven together to provide a comprehensive 

organismal protection against perceived threats. 
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Introduction 

It is now generally accepted that in higher organisms, microbial infections can be 

recognised in one of two ways. Firstly, “microbe-associated molecular patterns” 

(MAMPs) can act as ligands for dedicated host receptors, setting off intracellular 

signal transduction cascades that lead to the production of defence molecules. The 

best-known examples of this type of MAMP-triggered immunity (MTI) are 

undoubtedly those involving members of the Toll-like receptor (TLR) family in 

vertebrates [1]. Alternatively, perturbations of host physiology provoked by infection 

can trigger an immune response. Here, three broad categories can be distinguished: (i) 

The host can detect “damage-associated molecular patterns” (DAMPs). These are 

often endogenous molecules released to an uncharacteristic location, such as nuclear 

proteins or mitochondrial DNA in the cytoplasm, or ATP in the extracellular milieu. 

(ii) Falling under the umbrella term, the “guard hypothesis”, specific alterations of 

host proteins, or protein complexes, brought about by pathogen-delivered effectors, 

can be recognised and again, act as the signal for initiating defence mechanisms. (iii) 

Lastly, more generic alterations, such as abrupt changes in membrane potential or of 

translational capacity can also be triggers of host innate immune responses. These last 

2 classes are examples of “effector-triggered immunity” (ETI), best characterized in 

plants [2], but increasingly recognised as important for animal innate immunity too 

[3], where the term “surveillance” is frequently applied [4]. 

This review is largely concerned with surveillance mechanisms. We explore the links 

that exist between the disruption of cellular or organismal homeostasis and innate 

immune defence, as revealed by recent studies with the nematode worm 

Caenorhabditis elegans. We cover subjects reflecting the diversity of known 

mechanisms. This choice is governed in part by the fact that in spite of more than a 
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decade’s research, no host pathogen recognition receptors have been unambiguously 

defined in C. elegans [4], but more importantly because the surveillance mechanisms 

described in worms are either known to be or may be evolutionary conserved. 

 

1. Epidermal injury. 

 

The first DAMP important for C. elegans innate defences was uncovered through 

studies with the obligate fungal endoparasite Drechmeria coniospora. Infection 

begins with the penetration of the worm’s extracellular cuticle and epidermis by 

specialised hyphal structures [5]. In common with physical disruption of epidermal 

integrity, in mutants lacking certain structural proteins (e.g. specific collagens), 

infection with D. coniospora leads to an accumulation of hydroxyphenyllactic acid 

(HPLA). This tyrosine-derived metabolite activates a specific G-protein coupled 

receptor (GPCR), DCAR-1, which acts upstream of a well-characterised p38 MAPK 

cascade [6], via the STAT-like transcription factor STA-2 [7], to switch on the 

expression of antimicrobial peptide genes [8]. DCAR-1 is also activated upon minor 

mechanical injury, caused by a needle wound or laser. DCAR-1 therefore appears to 

act as the receptor for an endogenous signal of damage, the DAMP, HPLA, as well as 

structurally related molecules [8]. Although there are no clear DCAR-1 orthologues in 

higher species, it is interesting to note that in humans, the level of HPLA increases 

dramatically during sepsis as a consequence of microbial degradation of tyrosine [9]. 

In C. elegans, it has not yet been established precisely how HPLA levels are 

controlled [8]. 

Injuring the C. elegans epidermis is associated with a separate wound-healing 

response [10]. This involves local production of superoxide by mitochondria (mtROS) 
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at the site of injury, alteration of a redox-sensitive motif in RHO GTPases and 

assembly of rings of F-actin, that constrict to close any open holes in the epidermal 

membrane [11]. mtROS are also sensed by the apoptotic pathway and can, 

independently of apoptosis, elicit protective mechanisms that keep the organism alive 

under stressful conditions [12]. 

Upon violent injury, the expression of antimicrobial peptide genes is induced, in a 

STA-2 dependent manner, but purportedly independently of p38 MAPK signalling. It 

was proposed that this is a consequence of the disruption of the normal physical 

association of STA-2 with hemidesmosomes, which attach the epidermal cells to the 

cuticle, although no concomitant increase in nuclear STA-2 was demonstrated. 

Importantly, however, it was shown that disruption of hemidesmosome structure in 

primary Human Epidermal Keratinocytes leads to non-canonical but STAT-dependent 

antimicrobial peptide gene expression [13]. There is therefore reason to believe that 

epithelial barriers detect danger and activate immune defences via an evolutionarily 

conserved mechanism more akin to mechanical than chemical signalling (see [14] for 

a recent review). 

 

2. Disruption of genome integrity 

 

As stated in the introduction, diverse pathogens produce effector protein required for 

full virulence. Among them, some target host nuclei. Enteropathogenic E. coli, for 

example, secretes EspF that targets the nucleolus, depleting it of nucleolin [15]. The 

same effector also depletes host cell DNA mismatch repair proteins, increasing the 

frequency of potentially deleterious spontaneous mutations [16]. DNA damage can 

therefore be a surrogate signal for infection. In C. elegans, DNA damage has a broad 
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impact on gene expression. It causes the up-regulation of genes encoding lysozymes 

and C-type lectins [17] also induced during bacterial intestinal infection [18]. As this 

was not observed in mutants lacking a germline, or in an ERK MAP kinase mutant, 

Ermolaeva  et al. proposed that DNA damage triggers ERK signalling in germ cells to 

release an unknown signal that then activates the p38 MAPK pathway in the intestine. 

Presumably as a secondary consequence, DNA damage also activates the ubiquitin-

proteasome system (UPS) in somatic tissues, which confers enhanced proteostasis and 

systemic stress resistance. This was proposed to promote endurance of somatic 

tissues, needed if progeny production is delayed as a consequence of problems with 

germ cell genome integrity [17]. Fully 2/5th of the genes induced by DNA damage are 

targets of the conserved FOXO transcription factor DAF-16, an important regulator of 

resistance to stress and infection [19]. Consistent with this, a subsequent study 

showed that DNA damage causes the translocation of DAF-16 into intestinal nuclei. 

There, it acts with a GATA factor to govern target gene expression and maintain 

normal cellular physiology despite sustained DNA damage [20]. In a similar manner, 

as in Drosophila [21], defence genes are expressed in somatic cells when fragmented 

DNA is not cleared from germ cells undergoing apoptosis [22]. There are precedents 

for this type of trans-tissue stress signalling in C. elegans. The organismal response to 

heat-shock is regulated cell non-autonomously, via neuronal signalling to the somatic 

tissues [23], by trans-cellular chaperone signalling between somatic tissues [24] as 

well as from somatic tissues to neurons (reviewed in [25]). Lastly, there is a global 

repression of stress responses, controlled by signals from germline stem cells at the 

onset of reproduction [26]. 

There are parallels between the observations of Ermolaeva  et al. [17] and the finding 

by Moita and colleagues that in mice, low doses of anthracycline antibiotics, which 
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provoke DNA damage, confer resistance to sepsis, through the ataxia-telangiectasia 

mutated kinase (ATM) and Fancony Anemia pathways [27]. It is also important to 

note that it has recently been shown that in vertebrates, DNA damage primes the Type 

I Interferon system (via the cytosolic DNA sensor STING) to promote an innate 

immune response [28]. Further, Cossart and colleagues have shown that the toxin 

listeriolysin O (LLO) blocks the signalling response to DNA breaks by degrading a 

host sensor protein. When the normal response is compromised, bacterial replication 

increases, supporting the idea that detection of DNA damage is an important infection 

control mechanism in mice [29] as well as nematodes. It is likely to be conserved in 

humans too, opening promising new avenues for the management of sepsis. 

 

3. Interference with transcription or translation 

 

Other virulence factors target host protein synthesis. The inhibition of translation by 

Pseudomonas aeruginosa Exotoxin A, which ribosylates elongation factor 2, 

provokes an immune response in C. elegans. This requires the p38 MAPK pathway as 

well as zip-2 [30,31], which encodes a transcription factor with a basic leucine zipper 

(bZIP) domain most similar to that of the ATF-2 family [32]. Shiga toxin that cleaves 

the 28S RNA of the 60S ribosomal subunit, thereby halting protein synthesis, also 

triggers the p38 MAPK pathway and expression of defence genes [33]. Indeed, even 

in the absence of any pathogen or toxin, blocking protein synthesis is enough to 

switch on host defences [30,31]. Subsequently, it was shown that this is an even more 

general phenomenon. Disruption of multiple core cellular processes can also provoke 

a transcriptional response in the intestine similar to that provoked by infection with 

bacterial gut pathogens [34]. There is thus a commonality between the consequences 
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of infection and of stress by ribotoxins and other microbial virulence factors. This is 

reflected in the existence of shared signalling mechanisms regulating the expression 

of cytoprotective and antimicrobial genes, including TFEB [35] and the mediator 

complex [36]. Both these are evolutionarily conserved and more generally, ribotoxic 

responses are known to activate MAPK signalling responses from yeast to mammals 

[37]. Toxins represent an essential part of the microbial armamentarium. Their 

triggering of host defence responses is likely to be evolutionary ancient (e.g. [38]). 

Perhaps to avoid wasteful induction of immune responses, in mammals, the 

mechanisms that detect changes in cellular physiology are integrated with regulators 

of metabolism such that a block of translation linked to amino acid starvation, for 

example, leads to T-cell anergy and not activation [39]. 

 

4. Induction of mitochondrial UPR (UPRmt) 

 

New cellular roles for mitochondria, in addition to their essential contribution to 

energy generation, continue to be uncovered (e.g. [12,40]). It is important that 

mitochondria function even under non-homeostatic conditions [41]. This capacity is 

guaranteed by a specialised unfolded protein response, the UPRmt [42]. A large 

number of bacterial species that share the same environment as C. elegans induce the 

UPRmt. Ceramide plays a key part in signalling the UPRmt [43], in line with the 

important role of lipids in UPR generally ([44]; reviewed in [45]). This response is 

negatively regulated by the Jun kinase KGB-1 [46], and relies on the bZip protein 

ATFS-1 that can bind to promoters of genes both in the nuclear and mitochondrial 

genomes and coordinate mitochondria-to-nuclear communication. Thus, while ATFS-

1 drives expression of mitochondrial chaperones [47], it limits the expression of genes 
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encoding components of the oxidative phosphorylation machinery during 

mitochondrial stress [48]. This mechanism is complemented by another pathway 

involving ROS-stimulated eIF2α kinase that leads to a reduction in protein translation 

[49].  

As mentioned above, compromising overall translatory capacity can by itself entail 

the expression of defence genes, but it also prevents ROS-induced UPRmt [46]. On the 

other hand, activation of the ATFS-1 branch of the UPRmt is associated with an 

induction of defence gene expression, in part via zip-2, and contributes to protect the 

host against infection [50]. Many microbial products, including the antibiotics 

chloramphenicol and tetracycline, specifically inhibit mitochondrial protein synthesis 

and trigger the UPRmt [51]. Equally, infection of C. elegans by wild-type 

P. aeruginosa causes mitochondrial dysfunction, leads to an UPRmt, and up-regulation 

of host antimicrobial defences. Bacterial strains that do not produce siderophores, 

which limit available iron, essential for mitochondrial function, or cyanide, which 

inhibits cytochrome c oxidase, are less potent in their stimulation of the UPRmt [50]. 

The potential importance of the mechanism is suggested by the fact that there are 

bacteria that block this host response [43]. 

In common with other stress responses in C. elegans, the UPRmt can involve trans-

tissue signalling. Thus, for example, provoking an UPRmt just in neurones leads to an 

UPRmt in the intestine (and increased longevity) [52]. Conversely, octopamine 

released from neurones governs mitochondrial morphology and metabolism, as well 

as impacting organismal ageing [53]. In this context, it should be mentioned that 

while worms’ standard lab diet of E. coli (strain OP50) appears innocuous for young 

worms, it acts as a mild pathogen in old or immunocompromised worms [18]. In old 

worms, this reflects the reduction of expression of genes encoding defence proteins, 
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including lysozymes and C-type lectins [54,55]. Thus lifespan on live OP50 equates 

in part with innate immune capacity. 

 

5. Mitophagy and autophagy  

 

The UPRmt has been described as a salvage pathway for functionally impaired 

mitochondria. In cases of irreparable damage, mitochondria can be removed by 

mitophagy (reviewed in [56]). This is a specialised form of autophagy, used by the 

cell generally to recycle damaged components. TFEB, which as mentioned above, 

controls defence gene expression also regulates autophagy [57,58]. Autophagy has 

been shown to play an important role in host resistance in C. elegans [35,59], as it 

does in other species. Mitophagy has a direct role in the resistance of C. elegans to 

infection, specifically against siderophore-mediated killing [60]. It is regulated via 

mechanisms that are interlinked with those involved in the UPRmt. For example, 

ceramide plays an important role in both processes, across species [43,61]. Further, in 

Drosophila, mitochondrial distress in muscle causes a tissue-specific redox-dependent 

UPRmt, and a systemic stimulation of mitophagy that involves insulin signalling [62]. 

Mitophagy is also regulated by the ubiquitin kinase PINK1. Under normal 

circumstances, PINK1 is imported into mitochondria and degraded. If this doesn’t 

occur, PINK1 accumulates on the mitochondrial outer membrane where it 

phosphorylates and activates the ubiquitin ligase Parkin, which then ubiquitinates 

outer mitochondrial membrane proteins. This marks the mitochondrion for 

engulfment by autophagosomes. In C. elegans, the conditions that activate ATFS-1 

can also cause PINK1-dependent mitophagy (reviewed in [56]). 
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6. Neurodegeneration 

 

Mitophagy has been implicated in the pathogenesis of several neurodegenerative 

disorders (reviewed in [63]). A link between such conditions and innate immunity 

was suggested from recent investigation of a C. elegans model of amyotrophic lateral 

sclerosis (ALS). Neuronal expression of ALS-causing mutant proteins, but not 

polyglutamine toxicity, induces expression of the antimicrobial peptide gene nlp-29 in 

other tissues. This response, and the underlying neurodegeneration, required 

neurosecretion [64], in contrast to the up-regulation of nlp-29 seen upon fungal 

infection [6]. These results complement prior work linking immune and nervous 

systems in C. elegans [65-68], and suggest that the worm may help understand the 

molecular basis of these connections under normal and pathological situations. 

 

Conclusions 

The C. elegans immune system is comparatively simple, since the worm has no 

specialized immune cells, nor any motile macrophage-like cells. Unbiased functional 

approaches in C. elegans, via genetic or genome-wide RNAi screens, have 

contributed to an understanding of the molecular underpinnings of its innate immune 

system and revealed hitherto unsuspected connections between different fundamental 

cellular processes. Several overarching themes have emerged. First, antimicrobial 

defences are intertwined with those that help protect the animal from abiotic stress. 

Second, disruption of any number of basic cellular functions, including translation or 

energy generation, can act as a trigger for switching on immune defences. Third, there 

is an extensive, as yet relatively poorly characterised cross-talk between the different 

tissues, involving the germline and the somatic tissues, with a prominent role for the 
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nervous system. A number of the mechanisms described for the first time in 

C. elegans appear to be present in higher animals. Work with this powerful model 

system will undoubtedly continue to provide insights into conserved aspects of innate 

immunity. 
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Figure 1. Model for diverse triggers of defense gene expression in response to 

infection. C. elegans uses effector-triggered immunity, as well as DAMP-triggered 

immunity, to upregulate defense gene expression in response to infection. MAMP 

triggered immunity is well-described for other hosts, but has not yet been described 

for C. elegans (see Box 1). In addition to cell-autonomous mechanisms, innate 

immune defences can be activated by perturbations in distant tissues. Figure adapted, 

with permission, from [4]. 
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Box 1: PAMP receptors in C. elegans? 

C. elegans lacks many of the families of proteins involved in PAMP recognition in 

other species [69]. There are a number of potential scavenger receptors (SR), 

including the SCARF ortholog CED-1, and 6 SCAV proteins of the SR-B family. 

Loss of function scav-1 mutants are highly susceptible to infection by Candida 

albicans and Cryptococcus neoformans [70]. ced-1 mutants also display a decreased 

resistance to these 2 intestinal fungal pathogens. But whether these C. elegans 

proteins actually recognize yeast cell wall beta-glucans and thereby trigger 

downstream effector gene expression has not been formally demonstrated. Knocking 

down scav-4 increases susceptibility to the nematocidal toxin Cry5B [71], suggesting 

they may play an indirect role in host defense. 

The most prominent candidate PAMP receptor, TOL-1 (the unique nematode TLR), 

was hypothesized to play a direct role in pathogen recognition since tol-1 mutants are 

defective in their avoidance of pathogenic bacteria [72]. This hypothesis was 

subsequently revised when it was found that tol-1 mutants do not have a problem in 

recognizing pathogens, but rather a defect in sensory integration [73]. A recent study 

has provided the explanation for these observations. It turns out that tol-1 is required 

for the terminal differentiation and function of the BAG neurons [74]. These 

chemosensory neurons are activated by CO2. Microbial respiration alters local CO2 

concentrations [75], and this is one signal that guides worms’ behaviour [76]. In 

common with other BAG-defective worms, tol-1 mutants are defective in CO2 

sensing; this alters their comportment in the presence of highly metabolically active 

microbes [74]. These results, together with others [77,78], put to rest the idea that 

TOL-1 functions as a PAMP receptor in C. elegans.  
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