Dynamical Triangulation Induced by Quantum Walk - Archive ouverte HAL Access content directly
Journal Articles Symmetry Year : 2020

Dynamical Triangulation Induced by Quantum Walk

(1) , , ,
Quentin Aristote
  • Function : Author
Nathanaël Eon
  • Function : Author
Giuseppe Di Molfetta
  • Function : Author


We present the single-particle sector of a quantum cellular automaton, namely a quantum walk, on a simple dynamical triangulated 2 - manifold. The triangulation is changed through Pachner moves, induced by the walker density itself, allowing the surface to transform into any topologically equivalent one. This model extends the quantum walk over triangular grid, introduced in a previous work, by one of the authors, whose space-time limit recovers the Dirac equation in (2+1)-dimensions. Numerical simulations show that the number of triangles and the local curvature grow as t α e − β t 2 , where α and β parametrize the way geometry changes upon the local density of the walker, and that, in the long run, flatness emerges. Finally, we also prove that the global behavior of the walker, remains the same under spacetime random fluctuations.

Dates and versions

hal-03594734 , version 1 (02-03-2022)



Di Molfetta Giuseppe, Quentin Aristote, Nathanaël Eon, Giuseppe Di Molfetta. Dynamical Triangulation Induced by Quantum Walk. Symmetry, 2020, 12 (1), pp.128. ⟨10.3390/sym12010128⟩. ⟨hal-03594734⟩
10 View
0 Download



Gmail Facebook Twitter LinkedIn More