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Abstract — In this paper, we propose a method based
on pixel prediction to detect objects into a large im-
age. We propose to integrate the Weighted Error Layer
(WEL) in a Convolution Neuronal Network (CNN) ar-
chitecture in order to weight the error during the back-
propagation and to reduce the impact of the borders.
We estimate the orientation of the objects when the de-
tection step is achieved. Our proposed layer is evalu-
ated on real data in order to detect amphorae on the
Mazatos underwater archaeological site.

I. INTRODUCTION

Mazotos shipwreck lies at a depth of -44 m, some 14
nautical miles south-west of Larnaca, 1.5 nm from the
shore. The main visible feature of the site is a virtually
undisturbed concentration of amphorae on a sandy, almost
flat seabed. Its maximum dimensions are 17.5 x 8 m. The
oblong concentration, almost in the form of a ship, has
a north-south orientation and consists of 500-800 Chian
amphorae partly or totally visible, dating to the middle of
fourth century BC [3]. In 2007, the initial photographic
survey was aiming in the creation of a photomosaic and
sketch of the site, to be used for further planning, rather
than documentation. These photos were captured in order
to provide complete monoscopic coverage, rather than a
multi-view survey. In 2012, after two excavation periods,
with the wreck site being disturbed, the original photo data
set from 2007 was re processed [4] with a free network
adjustment, to establish both the control point network as
well the 3D documentation of the site as discovered. Be-
cause of the initial scope of the 2007 photography, and the
strong relief of the object, there are 3D gaps on the 3D
model.

The set of photographs made in 2007 were then used in this
paper in order to automatically extract known amphorae
present on the site.

Using both an orthophoto and a dense cloud of 3D points
we propose a fully automated pipeline able to detect am-
phorae, the corresponding typology and estimate a pose for
each artifact. The goal is to obtain a full 3D representation

of the cargo using partial observations of each amphorae
and the corresponding theoretical model.

The rest of the paper is organized as follow: first, in sec-
tion ii. we present the data used. Then, in section iii. we
introduce the CNN and our proposed layer. Further, sec-
tion v. resumes the operation of the orientation estimation.
Finally, we conclude and give some results in the last sec-
tion.

II. MAZOTOS DATA

In our context, we detect amphorae in a 3D scene. Am-
phora detection is a challenging problem, as amphorae
vary in orientation and appearance. Indeed, they can be
broken or hidden under the sand or by another amphora.
Moreover the second difficulty has to do with the data; as a
matter of fact, the amount of examples of amphora is very
low which is an issue to train a machine learning model.

III. CONVOLUTIONAL NEURAL NETWORK

To deal with the high number of 3D points we de-
tect the amphorae directly on the orthophoto obtained by
the 2D projection. The size of this orthophoto is around
38,000% 15,000 pixels.

To avoid the lack of data, we use a pixel segmentation
method based on a CNN [11, 12]. However the CNN can
not process the entire image at once. In such a case, it is
thus appropriate to process the image piece by piece. So
we propose to use a sliding window to get patches of size
400400 as input of the CNN.

The CNN is composed of 7 convolution layers and 3
pooling layers to reduce the dimension of the input image
to a set of feature maps of size 25x25. The CNN is then
composed by 3 unpooling layers and 3 convolution layers
to obtain the final probability map. We perform a batch
normalization [8] and then we apply the rectified linear unit
(ReLU) function after each convolution.

The Xlendi database [5] is used to pre-train the CNN
using an auto-encoder process [7]. Then, we do finetuning
on the CNN and we consider around 25% of the Mazotos
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Fig. 1. The testing images is processed by all the models in the CNN ensemble. The final result is the average of all the

different outputs.

image as the ground truth. During the learning step, ran-
dom patches of the ground truth of size 400x400 feed the
CNN. We define 3 classes in the database : the head which
is the rim, the neck and the handles of the amphora; the
body of the amphora; and all others objects such as rock,
sand, piece of amphora...

During the prediction step it is impossible to predict if
a pixel on the border of the patch, noted p, belongs to an
amphora class or to a broken piece of amphora. To solve
this problem the sliding window has a stride of 1 pixel and
so the pixel p has different predictions corresponding to all
positions in the sliding window. We can use the average of
all the predictions as a final prediction score.

However during the training step this problem is more
complex. During the back-propagation, the CNN is ac-
tivated to give a prediction for each pixel in the patch.
This prediction map is compared to the ground truth to
obtain an error on each pixel. This error is then propa-
gated in the network to update the weights. As shown in
Figure 2, the classes of pixels close to the borders can not
be predicted using only the content of the sliding window.
The error introduced by the predictions of these pixels are
back-propagated in the network and distorts the updating
of weights.

To solve this problem, we propose to add a specific layer
on the last convolution layer. This layer, named Weighted
Error Layer (WEL), is equivalent to the identity function
during the forward pass and so does not change the features
created by the last layer. WEL is used during the backward
process.

The update rule for a weight, noted w;;, between the
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Fig. 2. Representation of the content of the sliding window
at two different positions. The red sliding window shows
two pieces of amphora on the border and one piece of rock
which can not be identified by human. The blue sliding
window represents the same amphora as the red one but it
can be easily identified using the entire content.

neuron ¢ and j is :
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where A is the momentum, € is the learning rate and E is
the average error over the batch D. The error can be defined

as:
oE



where o; is the output of the neuron 7 and J; is the error
product by the neuron j. In our case, the CNN produces
one probability map for each different labels (neck, body,
other). The index j, in the equation 2 can be expressed as
a position (z, y) and a label [.

WEL is associated to a specific function in order to
weight the error gradient back propagated. We propose
to use a Gaussian function as :

oF VE—20)2 4 (y—90)2
= 0p.0; Ae” T o 3)

5wij

where A is a normalization term and o, xg, yo are Gaussian
parameters. We notice in the equation 3 that the index [ is
not used because WEL is processed to all probability maps
in the same way.

In this paper, we use the following WEL parameters :
A =3,0 = 4.1, zp = 200 and yo = 200. So the error
given by the central pixel is weighted by a 3 factor and a
pixel located on the left border is weighted by a 7.8 x 1073
factor.

Moreover during the testing step we use WEL to weight
the prediction map. We note p(z, y) the prediction of pixel
p with the relative position (x,y) in the sliding window.
The final prediction, noted py, given by the CNN is :
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So the final score for each pixel is given by the sum of
all the predictions for this pixel divided by the sum of the
WEL weights.

IV. SEGMENTATION RESULTS

To get better results we train an ensemble of four CNN
with different initializations [1, 2]. The training step for
each CNN takes around one day using the Caffe [9] frame-
work on a GTX 1080 graphics card. The adaptive gradient
[6] optimization method is used during the training step.
We also use the following data augmentation [10] tech-
niques to improve the training database information, which
include horizontally and vertically flipping, random crops,
rotation and random scaling.

On the Figure 1 we can see the segmentation map given
by the CNN. To overcome the asymmetric data we reduce
the background probability by 2 and then we build the
quantify map using the maximum probabilities. The Fig-
ure 3 represents the efficiency of our approach based on
different scenarios.

The objects in the Xlendi image doesn’t have the same
topologies than the objects in Mazatos image. However,
the figure 3 shows that the CNN using a pre-training on
Xlendi gives better performances. Indeed, for a recall of
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Fig. 3. The ROC curves represent the performance of three
CNN using different databases. The CNN A uses only the
data from Mazatos and not the Xlendi data. The CNN B
uses the data from Xlendi as pre-train and Mazatos data
for the training. The CNN C is trained using 10% more
amphorae from Mazatos.

80.0%, the precision is 60.0% for the CNN without a pre-
train on Xlendi compare to 61.4% for the CNN including
a pre-train step on Xlendi data. Moreover the size of the
training database impacts the performance. We can assume
that using more images during the training step and the pre
training increases the overall performance. In our case, we
fix the threshold to get a hight recall. Indeed the following
orientation estimation step will remove the false positive
detections and the duplicate detections.

V. ORIENTATION ESTIMATION

After the prediction step, we obtain the probability map
of each pixel. We quantify the map using a threshold in
order to get all the positions of pixels which belong to the
head or body classes. We estimate the position of all the
amphorae using a difference of Gaussian approach (DoG).
The standard deviation for Gaussian Kernel is in the range
of 20 to 90. The smallest value corresponds to the size of
the amphora’s rim, and the largest value to the size of the
entire amphora. After the detection, in order to check all
the blob detections, we reject each blob whose the average
probability of all its pixels values is below 0.85.

For each blob detected, we extract from the 3D model a
3D patch of size 300x300x300. In this 3D patch we re-
move all points corresponding to pixels whose the proba-
bility to be an amphora are low. We check that all extracted
patches contain enough information to process an orienta-
tion estimation. The Figure 4 represents the pipeline from
the tested image to the 3D extracted patch.

We assume that amphora is randomly oriented and its
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Blob detection using DoG on
the probability map

Pixels with high probabilities 3D model corresponding

Fig. 4. Representation of the proposed framework using two images as examples. The first step uses the ensemble of CNN
to create the probability map. In the second step, all the blobs are detected in the probability map. In the third step, pixels
whose the probability to be an amphora is low are masked for each blob. Finally, We apply the mask on the 3D model in
order to fit the theoretical 3D model using the Go-ICP algorithm.

representation is only a piece of the theoretical model. To
deal with this problem we propose to use the Go-ICP [13]
witch is an algorithm of iterative closest point based on
the branch-and-bound schema. This algorithm is efficiency
because the global solution is found regardless of the ini-
tialization and the number of points needed to fit the data
with the model can be low.

VI. CONCLUSION

In this paper we introduce the Weighted Error Layer to
improve the pixel segmentation. First experiment on the
Mazatos database shows good performance. Indeed we
detect around 90.3 percent of amphorae. The main issue
in the data is that amphorae are too close to each other
and so some amphorae are just ignored during the blob de-
tection. A more costly alternative would be to repeat all
the steps and to remove true amphorae detected and fitted.
However it is not feasible because the estimation of the
orientation process needs huge computational cost, around
8 hours/amphora. Therefore, it will be interesting to op-
timize this fitting step for future work. Moreover as this
work is done using only the orthophoto, the adaptation of
the network to take into account the 3D information could
improve the detection step.
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