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Abstract 

Viral infections are one of the major causes of human diseases that cause yearly millions of 

deaths and seriously threaten global health, as we have experienced with the COVID-19 

pandemic. 

Numerous approaches have been adopted to understand viral diseases and develop 

pharmacological treatments. Among them, the study of virus-host protein-protein interactions 

is a powerful strategy to comprehend the molecular mechanisms employed by the virus to 

infect the host cells and to interact with their components. Experimental protein-protein 

interactions described in the scientific literature have been systematically captured into 

several molecular interaction databases. These data are organized in structured formats and 

can be easily downloaded by users to perform further bioinformatic and network studies. 

Network analysis of available virus-host interactomes allow us to understand how the host 

interactome is perturbed upon viral infection and what are the key host proteins targeted by 

the virus and the main cellular pathways that are subverted. 

In this review, we give an overview of publicly available viral-human protein-protein 

interactions resources and the community standards, curation rules and adopted ontologies. 

A description of the main virus-human interactome available is provided, together with the 

main network analyses that have been performed. We finally discuss the main limitations and 

future challenges to assess the quality and reliability of protein-protein interaction datasets 

and resources. 

 

Introduction 

Infectious diseases, including respiratory viral infections, are among the top 10 causes of 

death worldwide accounting for millions of fatalities every year, especially in low-income 

countries (World Health Organization, 2020). Moreover, the increasing incidence of (re-

)emerging infectious diseases is posing serious global health threats (Jones et al., 2008; Cui 

et al., 2019; Pierson and Diamond, 2020), as exemplified by the COVID-19 pandemic (Morens 

and Fauci, 2020). 

 

The development of effective antiviral pharmacological treatments relies on an in-depth 

understanding of the virus biology and the host response(Eckhardt et al., 2020). In the last 
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decades, protein-protein interaction (PPI) discovery experiments have gained momentum 

among the different approaches to study viral diseases (de Chassey et al., 2014; Goodacre 

et al., 2020). Indeed, the systematic mapping of interactions between viral and host proteins 

can provide a better understanding of the molecular mechanisms of viral infections and 

identify viral perturbations underlying disease phenotypes, thus suggesting novel potential 

targets of therapeutic intervention(Cakir et al., 2021). 

 

Over the years, these interaction maps described in the scientific literature have been 

systematically captured into several publicly available molecular interaction databases (e.g., 

(Guirimand et al., 2015; Calderone et al., 2020; Del Toro et al., 2021; Oughtred et al., 2021). 

The interaction data is organized in structured formats(Orchard et al., 2007; Porras et al., 

2020), that can be easily processed and exploited to perform downstream computational and 

network analyses (Porras et al., 2020). 

  

In this review, we discuss the state-of-the-art of available PPI resources and in particular 

those dedicated to viruses and the human host. A brief description of the available datasets 

is provided along with the developed community standards, curation rules and strategies, 

adopted ontologies and controlled vocabularies, quality control procedures and scoring 

systems. We also give an overview of the largest available viral-human interactomes with a 

particular focus on the recently generated interaction maps between SARS-CoV-2 and 

human proteins, as well as those of other (re-)emerging viruses like Zika and Dengue, 

outlining common and virus-specific interaction and host-cell perturbation patterns.  

We discuss how these interaction networks can provide novel mechanistic insights on viral 

infection biology and can suggest novel pharmacological strategies. Finally, we review the 

main limitations of molecular interaction resources and datasets and their future challenges.  

 

Public resources collecting virus-host protein-protein interaction data 

Virus-host molecular interactions, mostly PPIs, detected from high-throughput studies, 

together with those identified in hundreds of biochemical and biophysical low-throughput 

studies, have been gathered in distinct public databases using structured formats (Licata and 

Orchard, 2016; Goodacre et al., 2020). 
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These public resources can be divided in: (i) primary databases that collect only manually 

curated molecular interactions extracted from peer-reviewed journals and related to different 

viruses and their relative hosts, such as MINT (Calderone et al., 2020), IntAct (Del Toro et al., 

2021), and BioGRID (Oughtred et al., 2021); (ii) metadatabases integrating data from primary 

resources, such as VirusMentha (Calderone et al., 2015) and APID (Alonso-López et al., 

2019); (iii) databases combining experimental interaction data with predicted PPIs, such as 

virusSTRING (Szklarczyk et al., 2021), human-virus PPI database (HVIDB) (Yang et al., 

2021) and the pathogen-host interaction search tool PHISTO (Durmuş Tekir et al., 2013); (iv) 

databases, such as VirHostnet3.0 database (Guirimand et al., 2015), which are both primary 

resources collecting manually annotated PPIs and metadatabases integrating data from other 

molecular interaction databases; and (v) databases collecting information only related to a 

specific virus-host interactome, such as DenHunt (Karyala et al., 2016) and DenvInt (Dey and 

Mukhopadhyay, 2017) for the Dengue virus, the HIV-1 Human Interaction Database (Ako-

Adjei et al., 2015) and the Hepatitis C Virus Protein Interaction Database (HCVpro) (Kwofie 

et al., 2011). 

 

Despite the large amount of data accumulated over the years in these resources, the early 

data collection did not follow common criteria in terms of data curation and standardization. 

This discrepancy in dataset formats and curation strategies is sometimes the cause of 

heterogeneous data generation, which is difficult to filter, use and analyze without data loss 

and a time-consuming scrupulous work by bioinformaticians. With this in mind, several years 

ago, the Molecular Interaction working group of the HUPO-Proteomics Standards Initiative 

(HUPO-PSI) has developed standards, tools and Controlled Vocabularies (CVs) that have 

allowed life science communities to combine and analyze datasets collected and stored in 

different molecular interaction databases (Kerrien et al., 2007; Deutsch et al., 2017). In 2007, 

the working group defined the minimum information required for reporting a molecular 

interaction experiment (MIMIx), which enables the systematic capture and the access to 

interaction data in different resources(Orchard et al., 2007). Several databases have adopted 

this standard over the years, (e.g., BIOGRID, IntAct, MINT, VirHostNet), thus enabling 

seamless integration of distinct interaction datasets at the minimum level of interaction details, 

such as interaction detection and participant detection methods. 

For instance, the integration of virus-human PPIs from the main resources collecting virus-

host interactions (e.g., MINT, IntAct, VirHostnet 3.0 and BIOGRID, data fetched in August 
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2021), generates a very large set of 54237 interactions between viral and human proteins 

(Figure 1A). Notably, the overlap between them is very small and mainly consists of the large-

scale virus-human interactomes (Figure 1B), suggesting that the different resources may use 

complementary strategies to mine the available literature. 

 

IMEx databases, their curation strategies and adopted standards  

Starting from 2012, some of the major resources collecting PPI data, agreed to unify their 

curation efforts to obtain a shared and non-redundant dataset, which is annotated using the 

same curation rules and common export standards. 

  

The result of this coordination is the International Molecular Exchange (IMEx) consortium 

(http://www.imexconsortium.org/), whose members (such as IntAct, MINT, DIP, UniProtKB) 

have agreed to curate only experimentally interaction data coming from peer-reviewed 

papers. 

  

The consortium members are all professional bio-curators, employing a common detailed 

curation guideline and up-to-date controlled vocabularies that allow high accuracy of quality 

control procedures. For instance, interaction data is checked twice before its release, and 

specific tools are used (e.g., the PSI-MI semantic validator (Montecchi-Palazzi et al., 2009)) 

to automatically check for potential errors and discrepancies related to the PSI-MI ontology 

of all the entries.  

  

All IMEx entries are annotated with a wealth of details, such as the role played by the 

participant within the experiment (e.g., bait, prey, neutral), host organism information, cell line 

or tissue where the experiment was carried out, and several other features related to the 

interaction, such as binding sites, mutation effect, construct tags, parameters and 

stoichiometry (Porras et al., 2020). 

 

IMEx datasets can be filtered according to the MIscore, a scoring system that measures the 

quality of a PPI based on the number of manuscripts reporting the interaction, the type of 

interaction and the experimental methods used to detect the given interaction (Villaveces et 

al., 2015). 
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All IMEx virus-host datasets are available at the IntAct download page 

(https://www.ebi.ac.uk/intact/download/datasets). As of August 2021, the IMEx virus-human 

dataset consists of 22,896 PPIs (Supplementary Table 1). Coronaviridae, Orthomyxoviridae, 

Papillomaviridae and Herpesviridae are among the most represented families (Figure 1C). 

The datasets contain not only virus-human host interactions, but also interactions involving 

proteins from other animal viruses and hosts. A dedicated COVID-19 dataset is as well 

available (Perfetto et al., 2020). 

 

Main limitations of PPI data and their impact on interactome analysis 
 

Studies of virus-host interactomes have turned out to be extremely powerful to identify the 

main host target proteins and the biological processes perturbed during a viral infection, but 

also to predict new potential therapeutic targets and drugs repurposing candidates 

(Bouhaddou et al., 2020; Gordon et al., 2020b). 

  

However, the quality and reliability of these analyses are biased by several factors, such as 

the interactome coverage, the methodologies applied to generate the PPI network, the lack 

of low throughput validation studies, true negative PPIs and the types of standards adopted 

to annotate those data (Braun et al., 2009; Venkatesan et al., 2009). 

Most of the available molecular interaction data is associated with the frequently studied viral 

families due to their impact on public health and global economy (Figure 1C). Their 

interactomes are often the result of large-scale yeast two-hybrid or AP-MS screens (de 

Chassey et al., 2008; Shapira et al., 2009; Tripathi et al., 2010; Muller et al., 2012; Dolan et 

al., 2013; Wang et al., 2017; Gordon et al., 2020a; Li et al., 2021; Stukalov et al., 2021) 

(Supplementary Table 2, Figure 1D).  

According to the methodology applied, different subsets of PPIs and different interaction types 

(direct or indirect) can be detected, and this partially explains the poor overlap often observed 

between large-scale PPI datasets (Braun, 2012). Furthermore, these differences are often 

related to the strategies employed by researchers during the selection of high confident 

interactors and the removal of spurious interactors (Walhout and Vidal, 1999; Hein et al., 

2015; Choi et al., 2019). 
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As an example, the three main high-throughput experimental screens to map the interactome 

between SARS-CoV-2 and human proteins employed similar AP-MS methodologies (Gordon 

et al., 2020a; Li et al., 2021; Stukalov et al., 2021). However, Gordon et al. and Li et al. used 

HEK293T cells, while Stukalov et al. used A549 cells. Despite the use of the same technique 

and in two cases of the same cell line, the three screens detected a different number of 

interactions and showed a poor overlap in terms of human targets. However, pathway 

enrichment analyses revealed commonalities in the biological processes and cellular 

pathways targeted by viral proteins, such as cell cycle and response to stress (Perfetto et al., 

2020). 

  

This variability can be further amplified by different experimental conditions, tissues or cell 

lines used or experimental and participant modifications (e.g., use of chemicals or drugs, use 

and position of a tag, protein mutations). 

 

Ammari et al. showed that the use of rich datasets, such as the ones provided by IMEx 

resources, allows to perform more comprehensive network analysis whose output can differ 

greatly depending on the biological context or methodology used. For example, the host 

interacting partners of HCV proteins change depending on the cell line used to perform the 

experiments (e.g., Huh7 versus HEK293) and consequently the cellular processes in which 

they are involved (Ammari et al., 2018). 

All these aspects must be considered before selecting, merging and analyzing PPI datasets. 

The choice of a dataset containing information on the biological context (Porras et al., 2020) 

in which the interactions have occurred, can allow more sophisticated analysis and reliable 

outcomes. 

  

Another important aspect that can strongly impact the evaluation of the quality of a virus-host 

interactome is the use of small-scale biochemical and biophysical studies that can validate 

and confirm the interactions found in large-scale experiments. A detailed analysis of the 

available validated virus-host interactions has been presented in a recent review (Goodacre 

et al., 2020). 

 

In-silico approaches based on sequence (e.g., (Eid et al., 2016; Liu-Wei et al., 2021)) and 

structural similarity (e.g., (de Chassey et al., 2013; Lasso et al., 2019)), as well as protein 
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docking (Wierbowski et al., 2021), has been also used to predict virus-host protein-protein 

interactions. The recent advent of deep-learning methods to predict protein structures (Senior 

et al., 2020; Baek et al., 2021) as well as protein macromolecular complexes (Baek et al., 

2021; Bryant et al., 2021; Evans et al., 2021), can be a useful complementary strategy to  

identify or validate the molecular determinants of virus-host protein interactions identified in 

experimental assays. 

  

Finally, negative PPIs can be extremely important for validating interaction data or to assess 

the quality of interaction prediction methods. To our knowledge, the Negatome Database 2.0 

is the only available resource collecting valuable negative interaction data (Blohm et al., 

2014). Indeed, the database lists experimentally verified non-interacting proteins identified 

either by manual curation from literature (2171 negative interactions, 75 of which involve at 

least one viral protein) or derived by the analysis of the protein structures from the PDB (4397 

negative interactions, only two involve at least one viral protein).   

The IMEx consortium databases also collect negative interactions (Porras et al., 2020). 

However, the size of the dataset is still small (~1000 PPIs) and only 18 of those are negative 

virus-host interactions, suggesting that, on one hand, researchers should systematically 

provide the negative interaction data coming from their experiments, and on the other hand, 

additional curation effort is needed to extract this information from the scientific literature. 

 

Viral-human interactomes: from network perturbation to dysregulated biological 
processes in disease 

Over the past two decades, several high-throughput techniques, such as yeast two-hybrid 

and affinity purification coupled to mass spectrometry (AP-MS), have been developed to map 

model organism interactomes in order to decipher the dynamics and complexity of interaction 

networks (Snider et al., 2015). These methodologies have also been applied to chart the 

interactome between several viruses and the human host (Supplementary Table 2 and Figure 

1D-E). 

  

The first virus-host interaction maps that have been deciphered (EBV, HCV) revealed that 

viral proteins preferentially target highly connected proteins (hubs) among their host proteins 

(Calderwood et al., 2007; de Chassey et al., 2008). As these hub proteins are relatively close 
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in the network to a large number of proteins involved in different cellular processes, this could 

represent a virus strategy to subvert the cellular processes at its own benefit (Bösl et al., 

2019).  

Early structural bioinformatics analyses showed that human-cell hijacking by viral proteins 

can be achieved through interface mimicry of endogenous interactions (i.e., interaction 

between host proteins) (Franzosa and Xia, 2011; Garamszegi et al., 2013). Notably, they 

estimated that up to one-third of the viral-human interactions studied can be related to this 

phenomenon, in particular through the mimicry of non-globular protein interaction elements 

known as short linear motifs (SLiMs), which are short stretches of contiguous amino acids 

residues that often mediate transient PPIs (Davey et al., 2012) and have emerged through 

convergent evolution (Davey et al., 2011). Viral abuse of SLiMs is widespread (Davey et al., 

2011; Hagai et al., 2014; Via et al., 2015), and the pervasiveness of interface mimicry provides 

potential connections between infectious agents and human diseases (Chen and Xia, 2019; 

Lasso et al., 2021). 

 

Indeed, the targeted and consequently perturbed processes by human viruses encompass 

different and relevant signaling pathways: TGFbeta for SARS-CoV-2 and Hepatitis C Virus 

(HCV) (de Chassey et al., 2008; Stukalov et al., 2021); JAK/STAT for HCV (de Chassey et 

al., 2008); Notch for Epstein-Barr Virus (EBV), Human Papillomavirus (HPV), Polyoma Virus 

(PyV), and Adenovirus (Ad5) (Fossum et al., 2009); Wnt for Influenza A Virus (IAV-H1N1) 

(Shapira et al., 2009), and cellular processes such as autophagy (SARS-CoV-2) (Stukalov et 

al., 2021), apoptosis (EBV, HPV, PyV, and Ad5) (Fossum et al., 2009), focal adhesion (HCV) 

(de Chassey et al., 2008) or nonsense-mediated mRNA decay (Semliki Forest Virus (SFV) 

(Contu et al., 2021)). The identification of targeted cellular functions is usually performed 

using computational tools for functional enrichment analysis such as g:Profiler (Raudvere et 

al., 2019) and Metascape (Zhou et al., 2019). 

The blockade of some key factors through interactions is also often observed from PPI 

analysis. Whereas SARS-CoV-2 proteins perturb the NF-kB-repressing factor (NKRF), 

therefore potentially contributing to the host inflammatory response by acting on the IL-8-

mediated chemotaxis of neutrophils (Li et al., 2021), the Ebola virus increases its own 

transcription and replication by interfering with an ubiquitin ligase (RBBP6) (Batra et al., 
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2018). Zika and Dengue viruses suppresses interferon-stimulated genes by inhibiting the 

recruitment of the transcription complex PAF1C (Shah et al., 2018), and HIV protects its 

replication by cleaving EIF3D, a subunit of eukaryotic translation initiation factor 3, able to 

inhibit HIV replication (Jäger et al., 2012). Conversely, interactome analysis also allows 

discovering host proteins that protect against infection such as Plakophilin 2 (PKP2), a natural 

inhibitor of IAV polymerase complex (Wang et al., 2017). 

  

In addition, interaction analysis can explain disease phenotypes and unravel pathogenic 

mechanisms. The Zika virus (ZIKV) can cause neurodevelopmental defects (Platt et al., 

2018). The viral NS4A protein interacts with a gene linked to hereditary microcephaly in 

humans (hANKLE2) (Shah et al., 2018). Strikingly, the ubiquitous expression of NS4A in wild 

type Drosophila phenocopies microcephaly that, in turn, is rescued by the expression of 

hANKLE2 and or its ortholog in Drosophila (dAnkle2) (Shah et al., 2018). Virus-host PPI 

mapping therefore provides biological insights and unveils potential pathogenic mechanisms. 

 

Finally, although beyond the scope of this review, in the case of vector-borne diseases such 

as Dengue and Zika fever, the comparison between the virus-vector and the virus-host 

interaction maps (i.e., (Shah et al., 2018)) can reveal promising drug target candidates or 

treatment strategies to reduce the risk of viral resistance. 

 

Viral-host Interactomes of the emerging viruses: Commonalities and specificities 
 

Viruses have evolved sophisticated strategies to enter and evade host-cell defense and 

accelerate viral replication by perturbing a variety of cellular functions. Several integrated 

network analyses revealed that some of these strategies are virus-specific whereas others 

perturb common cellular pathways (Pichlmair et al., 2012; Shah et al., 2018; Bösl et al., 2019). 

In this section, we focus on four emerging viruses (SARS-CoV-2, Ebola virus, ZIKV and SFV), 

for which a repertoire of PPIs with human proteins in the IMEx consortium databases. As 

shown previously (Bösl et al., 2019), the four viruses show both common and specific human 

protein interactors (Figure 1F) as well as in terms of targeted biological processes. For 

instance, among the commonly targeted cellular functions, the most represented are related 

to protein translation and RNA processing (Supplementary Table 3), in agreement with the 
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biology of RNA viruses. Indeed, around one quarter of the known ~2000 human RNA binding 

proteins (RBPs) has been shown to play a critical role during viral infection (Garcia-Moreno 

et al., 2018). 

Interestingly, only five human interactors are shared by all the four viruses, and four out of 

five are RNA binding proteins or RBPs. One of them is the prohibitin (PHB1), which is known 

for its role in cell-to-cell transmission of herpes virus (Watanabe et al., 2021) and plays a 

pivotal role during other viral infections like that of Enterovirus and HCV (Liu et al., 2015; Too 

et al., 2018). Interestingly, RBPs that are commonly targeted by ZIKV, SFV and SARS-CoV-

2 are not only involved in mRNA translation but in many other immunoregulatory processes. 

Fifty-nine proteins are commonly targeted by ZIKV, SFV and SARS-CoV-2 (Figure 1F). All of 

them have RNA binding activity and some of them also take active part in immune regulation. 

For instance, DDX21, an RNA helicase, acts in innate immune response as positive regulator 

of NF-kB signaling (Zhang et al., 2011; Chen et al., 2014; Abdullah et al., 2021) and as 

antiviral factor (Chen et al., 2014). In addition, many RBPs commonly targeted by the three 

viruses are associated with ubiquitin mediated protein degradation pathways (e.g., RPS7, 

RPL11, RPS2, RPL5) and regulation of apoptotic processes (e.g., SERBP1, RSL1D1, RPS7), 

thus underlying the key role of RBPs in virus-host interactions. Do these emerging viruses 

strategically target RBPs, as also shown for IAV-H1N1 (Shapira et al., 2009)? If this is the 

case, what are the consequences of the hijacking of RBPs on host defense response upon 

infection? These are still open questions. However, recent studies highlight the antiviral or 

immune related function of RBPs (Newman et al., 2015; Díaz-Muñoz and Turner, 2018; 

Garcia-Moreno et al., 2019) and their implication in viral processes (Embarc-Buh et al., 2021; 

Kamel et al., 2021). 

Among SARS-CoV-2 specific human targets, there are 23 proteins linked to ER-associated 

protein degradation pathways members, such as BAG6 and STUB1. Recently, a study has 

shown that ER stress inducer thapsigargin inhibits coronavirus replication (Shaban et al., 

2021). Moreover, coronaviruses, including SARS-CoV-2, suppress ER quality control 

processes or ER associated degradation which is re-activated by the drug thapsigargin 

(Shaban et al., 2021). Hence, targeting of ERAD pathways by SARS-CoV-2 or other 

coronaviruses could be a unique strategy to evade host defense and facilitate viral replication 

within the host. 

ZIKV specific human targets are mainly involved in mitochondrial translation. Recent studies 

show that ZIKV infection impairs mitochondrial functions (Yang et al., 2020; Yau et al., 2021). 
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On the other hand, SFV specific interactors are involved in nonsense mediated mRNA decay 

(NMD) (Contu et al., 2021). Indeed, SFV inhibits NMD, which in turn helps the stabilization of 

the viral genomic RNA within the host cell (Contu et al., 2021). 

Altogether, a quick scrutiny of the human interactors of these four emerging viruses sheds 

light on some of the common as well as specific strategies to subvert host cellular machinery. 

Further and deeper investigation of these common and specific human proteins can therefore 

generate testable hypotheses on the infection biology of emerging and re-emerging diseases. 

 

Conclusion and future challenges 

PPI databases are important resources to gather and organize in structured formats virus-

host PPI datasets useful for further network analysis. A better coverage of the curated virus-

host PPIs together with the complete annotation of the experimental feature details, such as 

the biological context of an interaction, are necessary to perform more sophisticated network 

analysis. Indeed, network analysis has been proved to be fundamental to understand the 

perturbed cellular machinery by viruses. 

Reverse genetic systems are used to manipulate virus genomes in order to understand 

genotypic variation or to investigate specific gene functions (Messer et al., 2012; V’kovski et 

al., 2021). These technologies can be also useful to contextualize virus-host PPIs during the 

virus life cycle and to gain important information on virus pathological processes at the 

molecular level. 

 

Furthermore, the integration of interactome data with available proteomic, genetic, structural 

and clinical data can give a more comprehensive picture of the biological process perturbed 

during viral infection, paving the way to the identification of novel drug targets and successful 

treatments (Bouhaddou et al., 2020; Gordon et al., 2020b; Wierbowski et al., 2021). 
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Figure legends 

Figure 1. Virus-human protein-protein interaction data statistics.  

(A) Virus-Human PPI data from the three major primary interaction resources (August 2021, 

BioGRID: 3943 interactions, IMEx: 22,896 interactions; VirHostNet: 34,799 interactions).  

(B) PPI data overlap among BioGRID, IMEx and VirHostNet databases.  

(C)  Number of PPIs in the IMEx dataset for the most representative viral families. 

(D) Number of PPIs in the IMEx dataset according to the experimental methods used for the 

interaction detection. Methods were grouped in broad categories. For instance, yeast two-

hybrid is considered a “protein complementation assay”, and pull-down and 

coimmunoprecipitation belong to the “affinity technology” category. 

(E) Number of detected PPIs in each paper curated in the IMEx dataset. Most papers describe 

less than 5 interactions and very few contain more than 100 interactions. The Y-axis is log-

transformed. 

(F) Human targets overlap in the PPI network of four emerging viruses. Percentages are 

computed over the union of all the interactors. 
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