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Abstract: Rock walls in high mountain areas are the expression of long–term slopes response
(10  3  –10  5  years) to tectonics, weathering and denudation and a major source of
sediment and hazard. Mountain rock walls (RW) characteristics and evolution at
mountain–range scale is rarely discussed in the literature. Using a database of 791 RW
mapped in the Romanian Carpathians, we present their distribution and morphometry
in respect to lithological class, structural features and topography and relate them to
post–Younger Dryas (Holocene) rock slope failure chronology. Morphometric data
indicate that metamorphic and igneous RW (linked to a great extent to glacial valleys
and cirques headwalls) are usually restricted to the highest sectors of the mountain
slopes, are characterized by reduced relative heights and have an asymmetrical
distribution, being common on the North-exposed slopes but extremely rare on the
South. Statistical analysis results show the high significance of structural and tectonic
control on RW distribution in sedimentary units which imposes the predominance of
West and North orientations and RW dimensions up to a degree higher than in other
lithologies. Based on 38  10  Be surface exposure ages obtained on metric boulders
from the Southern and Eastern Carpathians, we hypothesise that metamorphic and
igneous RW in the formerly glaciated Carpathian valleys were significantly shaped
during Early Holocene (before 9 ka) by rock slope failures events that followed the
deglaciation of the highest cirques and the intense RW permafrost degradation. We
associate the long–term imprints of frost weathering to the significant North/South RW
and rock glaciers distribution asymmetry, also identified in other mid-latitude mountain
sites with similar topographic constraints.
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Rock walls in high mountain areas are the expression of long–term slopes response (103–105 

years) to tectonics, weathering and denudation and a major source of sediment and hazard. 

Mountain rock walls (RW) characteristics and evolution at mountain–range scale is rarely 

discussed in the literature. Using a database of 791 RW mapped in the Romanian Carpathians, 

we present their distribution and morphometry in respect to lithological class, structural features 

and topography and relate them to post–Younger Dryas (Holocene) rock slope failure chronology. 

Morphometric data indicate that metamorphic and igneous RW (linked to a great extent to glacial 

valleys and cirques headwalls) are usually restricted to the highest sectors of the mountain slopes, 

are characterized by reduced relative heights and have an asymmetrical distribution, being 

common on the North-exposed slopes but extremely rare on the South. Statistical analysis results 

show the high significance of structural and tectonic control on RW distribution in sedimentary 

units which imposes the predominance of West and North orientations and RW dimensions up to 

a degree higher than in other lithologies. Based on 38 10Be surface exposure ages obtained on 

metric boulders from the Southern and Eastern Carpathians, we hypothesise that metamorphic 

and igneous RW in the formerly glaciated Carpathian valleys were significantly shaped during 

Early Holocene (before 9 ka) by rock slope failures events that followed the deglaciation of the 

highest cirques and the intense RW permafrost degradation. We associate the long–term imprints 

of frost weathering to the significant North/South RW and rock glaciers distribution asymmetry, 

also identified in other mid-latitude mountain sites with similar topographic constraints. 
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ABSTRACT 24 

Rock walls in high mountain areas are the expression of long–term slopes response (103–105 25 

years) to tectonics, weathering and denudation and a major source of sediment and hazard. 26 
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Mountain rock walls (RW) characteristics and evolution at mountain–range scale is rarely 27 

discussed in the literature. Using a database of 791 RW mapped in the Romanian Carpathians, 28 

we present their distribution and morphometry in respect to lithological class, structural features 29 

and topography and relate them to post–Younger Dryas (Holocene) rock slope failure 30 

chronology. Morphometric data indicate that metamorphic and igneous RW (linked to a great 31 

extent to glacial valleys and cirques headwalls) are usually restricted to the highest sectors of 32 

the mountain slopes, are characterized by reduced relative heights and have an asymmetrical 33 

distribution, being common on the North-exposed slopes but extremely rare on the South. 34 

Statistical analysis results show the high significance of structural and tectonic control on RW 35 

distribution in sedimentary units which imposes the predominance of West and North 36 

orientations and RW dimensions up to a degree higher than in other lithologies. Based on 38 37 

10Be surface exposure ages obtained on metric boulders from the Southern and Eastern 38 

Carpathians, we hypothesise that metamorphic and igneous RW in the formerly glaciated 39 

Carpathian valleys were significantly shaped during Early Holocene (before 9 ka) by rock slope 40 

failures events that followed the deglaciation of the highest cirques and the intense RW 41 

permafrost degradation. We associate the long–term imprints of frost weathering to the 42 

significant North/South RW and rock glaciers distribution asymmetry, also identified in other 43 

mid-latitude mountain sites with similar topographic constraints. 44 

KEYWORDS: rock wall morphometry; lithology; rock slope failures; Romanian Carpathians 45 

 46 

1. INTRODUCTION 47 

Mountain RW are landforms highly sensitive for mechanical weathering and erosional 48 

processes (Hales and Roering, 2007; Matsuoka, 2008; Allen and Huggel, 2013; Phillips et al., 49 

2017), the rates of which are dictated by the interplay of lithology, climate and the local uplift 50 

regime (Willett 1999; Seong et al. 2009; Bartosch et al. 2017). Tectonics and structure 51 

significantly influence the extent and morphometry of the exposed rock surfaces in high 52 



mountain areas (Lifton et al. 2009; Ellis and Barnes 2015; Sauchyn et al. 1998) which determine 53 

differential resistance to weathering and erosion. In formerly glaciated European mountain 54 

ranges, weathering and denudation rates are reported quantitatively after the Last Glacial period 55 

(Curry and Morris 2004; Hughes et al. 2007; Messenzehl et al. 2017; Matthews et al. 2018). The 56 

occurrence of numerous rock slope failures (RSF) in response to local deglaciation 57 

debuttressing has been documented by absolute age dating (Soldati et al., 2004; Prager et al., 58 

2008; Ballantyne et al., 2014) with responses varying from immediate to millennial time lags 59 

(Ballantyne et al., 2014). The reconstruction of RSF chronology in Tatra Mountains (Pánek et 60 

al., 2016) shows that lower magnitude events within steep topography occurred in the highest 61 

sectors of slopes hundreds of years after glacier retreat and are likely triggered by ice mass 62 

disappearance, whereas complex RSF producing at millennial time–scale in lower topography 63 

are associated with climate changing to warmer and more humid conditions during the onset of 64 

the Holocene and the Sub-Boreal period (Soldati et al., 2004; Ivy-Ochs et al., 2009; Hermanns 65 

and Longva, 2013).   66 

High–mountain rock slopes are a continuous source area for geomorphic processes that trigger 67 

natural hazards like debris flows, rockfalls or rock avalanches (Loye et al. 2009; Corona et al. 68 

2013; Kromer 2017), especially when affected by permafrost degradation. RW stability is 69 

responsive to climate variables such as changes of permafrost conditions (Krautblatter et al. 70 

2013; Girard et al. 2013) and global climate change influencing periglacial processes (Gruber et 71 

al., 2004; Messenzehl et al., 2017; Phillips et al., 2017), which has also been documented in 72 

warming conditions during the Holocene in the European and Scandinavian Alps (Hormes et al., 73 

2008; Nagelisen et al., 2015; Hilger et al., 2021). This raises the question of RW evolution and 74 

subsequent debris production induced by the post–Younger Dryas permafrost retreat, especially 75 

in mid-latitude where permafrost in northerly slopes exists at lower altitudes than in southerly 76 

slopes (Magnin et al., 2015). 77 



Range–scale morphometric studies in the Romanian Carpathians have been documenting the 78 

distribution of glacial cirques by high–accuracy mapping (Mîndrescu and Evans 2014; 79 

Mîndrescu et al. 2010) and object oriented image analysis (Ardelean 2013). Geochronology 80 

studies based on absolute ages resume to deglaciation history, pointing to a Younger Dryas 81 

glacial advance at 12.9–12.1 ka only in the highest massifs (Popescu et al., 2017a). During the 82 

last decade, the intensive monitoring of the thermal regime of permafrost susceptible sites has 83 

shown the restrictive conditions for permafrost preservation in RW and rock glaciers 84 

(Vespremeanu–Stroe et al., 2012; Ardelean et al., 2017; Onaca et al., 2017; Popescu et al., 85 

2017b). Recent studies on RW present state, in terms of stability or thermal regime, 86 

emphasized the rockfall hazard imposed by seasonal thawing in steep North–exposed RW 87 

(Vasile et al., 2014; Onaca et al., 2015; Vasile and Vespremeanu–Stroe, 2017). 88 

In this paper we i) present the distribution of RW in relation to lithology, structure and 89 

topography for assessing differential RW retreat control factors and ii) provide a first insight on 90 

Holocene RSF occurrence as the last major shaping agent of RW in the Romanian Carpathians. 91 

The objectives are achieved by RW mapping and statistical analysis of distribution controlling 92 

parameters, and by in-situ 10Be surface exposure data analysis in glacial cirques and valleys 93 

from five different massifs. 94 

 95 

2. STUDY AREA 96 

The Romanian Carpathians stand as a geographical subdivision of the Carpathian Mountain Arc 97 

that stretches in Central and Eastern Europe (44° 30’ – 47° 45’ N and 21° 30’ – 27° 10’ E). They 98 

expand to a length of 900 km and reach the maximum altitude of 2544 m above sea level 99 

(a.s.l.). The three main subdivisions (i.e., the Eastern and Southern Carpathians – abbreviated 100 

EC and SC further on – and the Apuseni Mountains, Fig. 1a, b) show lithological and 101 

topographic differences that reflect the complexity of the geological evolution, structural 102 

characteristics, and influence of the Pleistocene glaciations. 103 



The Carpathians are part of the Alpine Orogeny and include tectonic units dating prior to the 104 

alpine event, in the Palaeozoic and early Mesozoic. The youngest exhumation phases 105 

determined by thermochronology age patterns in the central part of the SC are Latest 106 

Cretaceous – Middle Eocene. The south–western sector of the SC underwent Oligocene – 107 

Miocene exhumation, whereas most of the EC correspond to Early – Middle Miocene phases, 108 

except for the SE Carpathians (Curvature Carpathians) which started uplifting in both Miocene 109 

and Latest Pliocene – Quaternary exhumation episodes (Merten, 2011). The EC are built on a 110 

central Crystalline Unit (correspondent to present Rodna, Maramureș, Rarău and Hășmaș Mts.), 111 

Cretaceous Flysch (Ceahlău and Ciucaș Mts, extending towards the SC in Bucegi Mts) and 112 

Palaeogene Flysch (Table 1, Fig. 1b). Internal volcanism during the Miocene led to the 113 

formation of EC volcanic massifs while the Pliocene – Quaternary comprised both a rapid uplift 114 

of 500–1000 m (which led to the formation of the most recent depression areas), and the 115 

strongest volcanic activity in the area (Săndulescu, 1984; Linzer et al., 1998; Mutihac, 2004). 116 

The SC are comprised of three major Crystalline Units: the Getic Overthrust Nappe (Șureanu, 117 

Căpățânii, Lotru, Cindrel, Godeanu Mts), the Supragetic Overthrust Nappe (Făgăraș and Iezer 118 

Mts) and the Danubian Nappes (Retezat and Parâng Mts), the latter being formed by granitic 119 

and granodioritic batholiths in their central areas and marginal limestone massifs (Fig. 1a, b for 120 

location, Table 1). 121 



 122 

Figure 1: (a) Location of Eastern and Southern Carpathians and Apuseni Mts., and outline of the units included in the 123 

RW inventory (digital elevation by 1 arc-second resolution ASTER GDEM). (b) Simplified geological map of the 124 

Carpathians (modified and adapted from Vaida and Verniers, 2005, and Merten, 2011. Small insert shows the 125 

Carpathian Arc position in Romania (please refer to the colour version) 126 
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Unit name 

(max. altitude) 
Lithology/ Structure* Extent / Direction 

Nr. of mapped 
RW 

Glaciation** 

E
a
s
te

rn
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n

s
 

Maramureş 
(1956 m) 

Crystalline schist with peripheral 
limestone and sandstones  

Volcanic intrusions (basalts) 

15 km long / 
 NW–SE ridge 

11 Yes 

 Rodna 
(2303 m) 

Crystalline schist, micaschists and 
paragneiss 

Horst, Dragoş Vodă Fault 

40 km long /  
E–W ridge 

19 Yes 

Călimani 
(2100 m) 

Andesites (volcanic) 
Eroded craters 

Volcanic cone 5 Yes 

Ceahlău 
(1969 m) 

Conglomerates and flysch 
Suspended syncline 

15 km / N–S 10 No 

Hăşmaş 
(1973 m) 

Massive limestone 
West oriented syncline 

3.5 km long /  
NW–SE ridge 

6 No 

Ciucaş 
(1954 m) 

Conglomerates and sandstones, 
flysch 

East oriented syncline 

Two separated ridges 7 km / 
SW–NE and 3 km / NW–SE 

37 No 

S
o

u
th

e
rn

 C
a
rp

a
th
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n

s
 

Bucegi 
(2505 m) 

Conglomerates, sandstones 
Limestone with radiolarites 

N–S syncline, East oriented cuesta 
front slope 

Reversed U–shape 
30 km long ridge 

49 Yes 

Piatra Craiului (2238 
m) 

Limestone with radiolarites 
Hogback 

25 km long /  
NNE–SSW ridge 

13 No 

Iezer 
(2459 m) 

Micaschists and paragneiss 
Supragetic overthrust nappe 

20 km long /  
SW–NE ridge 

27 Yes 

Făgăraş 
(2544 m) 

Micashists and paragneiss, 
amphibolite 

Supragetic overthrust nappe 
Northern–Făgăraş Fault Line 

70km long W–E ridge, and 
multiple secondary N–S ridges 

248 Yes 

Cozia 
(1668 m) 

Gneiss 
Horst 

~70 km2 surface 3 No 

Buila–Vânturariţa 
(1885 m) 

Massive Limestone 
Hogback 

14 km long / 
SW–NE ridge 

23 No 

Parâng 
(2519 m) 

Granitoids 
 Amphibolite 

(Danubian Unit) 

25 km long / 
E–W ridge 

40 Yes 

Şureanu/ Cindrel/ 
Căpăţânii/ Lotrului 
(2130 – 2244 m) 

Micaschists and paragneiss, 
amphibolite (Getic Unit) 

15–25 km long / 
E–W ridges 

8 / 10/ 4 / 5 Yes 

Retezat 
(2509 m) 

Granodiorite intrusions Crystalline 
schist, amphibolite 

(Danubian Unit) 

15 km long main / W–E ridge 
2–5 km secondary N–S ridges 

187 Yes 

Ţarcu 
(2196 m) 

Conglomerates, sandstones, 
crystalline limestone 

Crystalline schist 

20 km long / N–S then NE–SW 
ridge 

26 Yes 

Godeanu/ 
Piule Iorgovanul (2291 
m) 

Micaschists and paragneiss, 
amphibolite / Recifal limestone 

20 km long /  
NE–SW ridge 

26 / 13 Yes 

Cerna Valley 
(1200 m) 

Recifal limestone 
Graben 

80 km long valley / NS 21 No 

Table 1: Main lithological, structural and morphographic characteristics of the mountain units in which rock walls were 128 

mapped 129 

* according to the Geological Map of Romania, scale 1:200 000 (Geological Institute of Romania) 130 

** according to the Map of Glacial Cirques in the Romanian Carpathians (Mîndrescu, 2016) 131 

Present neo–tectonic movements show a differential uplift trend of the Carpathian orogeny with 132 

mean values of 1–3 mm/yr, higher values up to 3–5 mm/yr reported in the Eastern Făgăraş, 133 

Bucegi Mts. and the Curvature Carpathians which are associated with the activity from Vrancea 134 

seismic region (Hoeven et al., 2005). 135 



The past glacial activity in the Carpathian area is expressed by well–preserved glacial cirques, 136 

valleys and associated rock walls (Mîndrescu et al., 2010), most of which were modelled during 137 

LGM and Late Glacial cold phases (Popescu et al. 2017a). 138 

The Romanian Carpathians are characterized by a temperate–continental climate, the mean 139 

annual air temperature (MAAT) ranging from -2°C at 2500 m a.s.l. (Vf. Omu meteorological 140 

station) and -0.4°C at 2190 m a.s.l. (Țarcu station) to 3 °C at 1577 m a.s.l. (Cozia station). Using 141 

a lapse rate of 0.63°C/100 m, the 0°C MAAT isotherm is around 2000 m a.s.l. on North–facing 142 

slopes and 2100 m a.s.l. on South–facing ones. Moisture is supplied by the West and SW 143 

dominating winds originating in the North–Atlantic and the Mediterranean, mean annual rainfall 144 

above 2000 m is 1100–1300 mm, snow cover reaches 1.5–2.0 m during January–March, and 145 

lasts in average 150–160 days per season (Micu et al., 2015). In-situ RW thermal monitoring 146 

above 2200 m a.s.l. (Vasile and Vespremeanu-Stroe, 2017) exhibits prolonged seasonal frost 147 

(140–150 days/season with potential frost penetration depths reaching 2 m), and mean annual 148 

rock temperatures (MART) of 0.5°C on the North–exposed slopes and 3–4°C higher MART on 149 

the southern slopes, where daily temperature oscillations prevail, and continuous freezing rarely 150 

sets within the -3…-8°C freezing window. 151 

 152 

3. METHODS AND DATA 153 

3.1 Rock wall mapping 154 

RW were mapped based on the available time records of Google Earth satellite imagery. 155 

Because some images were not clear enough for a good differentiation between the RW and 156 

the adjacent geomorphological units, a comparison with higher resolution air photography was 157 

undertaken (orthophoto images available for view only from the National Agency for Cadastre 158 

and Land Legislation – ANCPI at 1–5 m resolution). Further, the 25 m resolution EU–DEM 159 

digital surface model (EEA) was used to check slopes inclination and the inflection points within 160 

longitudinal profiles at the contact with the talus or at the top of the glacial cirques. The term 161 



rock wall refers herein to steep, bare and compact rock surfaces, with angles usually higher 162 

than 37–40 degrees (Gruber, 2007). We took into account RW with areas larger than 200 m2 in 163 

order to avoid patchy rock surfaces partially covered with vegetation or sporadic discontinuous 164 

outcrops. Considering these constraints, the analysis resumes to 21 mountain units in the EC 165 

and the SC (Fig. 1a for location), where rock surfaces matching these criteria were identified on 166 

satellite imagery. The geological map of Romania (scale 1: 200 000, Geological Institute of 167 

Romania) was used to determine the rock type of each mapped RW, assuring a complete 168 

spatial coverage over the entire range. 169 

3.2 Rock wall morphometry 170 

Mean RW area, total coverage, altitude, relative height, orientation and slope values were 171 

computed for each mountain unit (Table 2) and per lithology types, using the values from all 172 

units developed on the same rock class (sedimentary, igneous, metamorphic or volcanic). Each 173 

RW was vectorized and the resulting polygons were overlaid on the DEMs and then used for 174 

calculating the morphometric parameters in ArcGIS software. Mean RW orientation was 175 

determined by averaging raster direction. The RW area was calculated for a 2D projection of the 176 

RW polygons on the EU–DEM. 177 

3.3 Statistical analysis 178 

The statistical analysis was performed in RStudio (R version 3.4.0), and consisted in three 179 

stages. First, a data normality check was performed using the Shapiro–Wilk normality test 180 

(Shapiro and Wilk, 1965), which indicated the non-normality of the data. Then, for each 181 

mountain unit, a Kruskal–Wallis one–way analysis of variance test (Kruskal and Wallis, 1952) 182 

was performed in order to check if there are any statistically significant differences between 183 

groups of quantitative parameters, namely the relations between exposures and morphometry, 184 

and between lithology and morphometry. The Kruskal-Wallis Test is the non-parametric 185 

alternative to ANOVA (one-way analysis of variance), which checks if the analysed groups are 186 



subsets from the same population. The test computes the rank variance of the interest variable 187 

for the combined groups, and then calculates the H statistic (Equation 1) 188 

𝐻 =
𝑁−1(𝑔𝑛𝑛(𝑡𝑖−𝑇𝑗)2

𝑔𝑠𝑛𝑛(𝑡𝑗−𝑇𝑖)2)
,          Equation (1) 189 

where nn is the sample size of the group, g is the sum of the group n, snn is the sum of the 190 

corresponding group n, ti is the average observed rank sums for the group, tj is the observed 191 

rank for a value in the corresponding group, and Ti is the observed total average rank sums. 192 

(McKight and Najab, 2010). The computed H statistic then indicates whether the groups come 193 

from the same population by comparing it to a critical value, which for our analysis corresponds 194 

to a 95% confidence or a p-value < 0.05. For H values beyond the critical threshold the Kruskal-195 

Wallis Test indicates strong differences between analysed groups. Finally a post–hoc Dunn’s 196 

Test (Dunn, 1961) for multiple comparisons was performed in order to identify which mountain 197 

units have significantly different values of each pair of the analysed parameters. 198 

3.4 Surface exposure ages 199 

24 boulders (20 from Făgăraș and four from Bucegi Mts) were sampled for cosmogenic 10Be 200 

exposure dating. The samples are part of an extensive study regarding deglaciation and RSF, 201 

which counts more than 120 rock surfaces (unpublished data). During sample processing, the 202 

abundance of post–Younger Dryas resulting ages raised questions about RSF triggering the 203 

detachment of such boulders, as documented in other European mountain ranges (synthesis of 204 

studies in Pánek et al., 2016).  The samples included in the present study were collected along 205 

7 glacial valleys in Făgăraș Mts and one valley in Bucegi Mts, ranging from 1205 to 2287 m 206 

a.s.l., on metric–size boulders from both valley/cirque centre and peripheral. Sample size varied 207 

from 2 to 3 cm thick and sampled rock surfaces were vegetation free. Additionally, we 208 

accounted other 14 post–Younger Dryas boulder ages documented in the literature in Rodna 209 

(Gheorghiu, 2012), Parâng (Gheorghiu et al., 2015) and Retezat massifs (Reuther et al., 2007; 210 



Ruszkiczay-Rüdiger et al., 2021) which were considered as outliers in studies regarding 211 

deglaciation chronology, raising the database to 38 values from 16 valleys/cirques.  212 

Secondary, we aimed for absolute dating of a rock glacier (Doamnei RG) surface in Făgăraș 213 

Mts., where we sampled four boulders from the RG body on a longitudinal profile but also the 214 

source RW area above; for comparing a North/South RW exposure, the corresponding South–215 

face of Doamnei RW was also sampled. 216 

Dating procedure for Făgăraș and Bucegi samples is described below.  217 

The sample purification followed the procedure of Merchel and Herpers, 1999. Samples were 218 

crushed and sieved to the 0.25 – 1 mm fraction. Magnetic separation was performed on all 219 

samples with a magnetic separator “Frantz LB-1”. The other minerals that are embedded in 220 

samples were eliminated with mixtures of HCl and H2SiF6. Then atmospheric 10Be was 221 

eliminated by HF (48%) dissolutions. Before the total dissolution, 150 mg of a 9Be carrier 222 

solution (concentration 3025 ± 9 μg/g; Merchel et al., 2008) manufactured in-house from a 223 

phenakite crystal were added to the samples. The total dissolution of quartz was performed with 224 

HF 48% (3.6 mL per g of quartz and 30 mL in excess). The resulting solutions were evaporated 225 

until dryness and samples were recovered with hydrochloric acid. Subsequently samples were 226 

precipitated with ammonia before successive separations through an anion exchange column 227 

(Dowex 1X8) to remove iron and a cation exchange column (Dowex 50WX8), and to discard 228 

boron and recover Be (Merchel and Herpers, 1999). BeO targets were prepared by mixing 229 

Niobium powder with the BeO oxide for AMS measurements. 230 

All samples were chemically performed at Laboratoire National des Nucléides Cosmogéniques 231 

(LN2C) at CEREGE (Aix en Provence, France) and targets of purified BeO were prepared for 232 

AMS measurement at ASTER, the French National AMS Facility (CEREGE, Aix en Provence). 233 

The measurements were calibrated against an In-House standard (STD11) Braucher et al., 234 

2015 standard, using an assigned 10Be/9Be ratio of (1.191) × 10-11 (1.09%). Analytical 235 



uncertainties (reported as 1ϭ) included for all samples. The 10Be half-life of (1.387±0.01) × 106 236 

years (Chmeleff et al., 2010) was used.  237 

Production rates were scaled following Stone, 2000 with a sea level high latitude production rate 238 

of 4.02±0.36 atoms/g SiO2/yr (Borchers et al., 2016). Rock density of 2.5 g/cm3 was used for all 239 

samples. Topographic shielding was calculated using the CosmoCalc 2.2 Excel add-in of 240 

Vermeesch, 2007. Air pressure used is 1013 mBar. There was no quantitative information on 241 

the snow cover during the surface exposure duration, hence, no corrections for potential effects 242 

of snow cover or denudation were applied to the ages. 10Be exposure ages were calculated 243 

following Equation (2) using muogenic contributions of Braucher et al., 2011. 244 

 𝑁(𝑥, 𝜀, 𝑡) =
𝑃𝑠𝑝 ∗ exp (−

𝑥
𝐿𝑛

)(1 − exp (−𝑡 (
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                                                                                 Equation (2) 248 

where: 249 

N (x, ε, t) is the nuclide concentration function of depth x (g/cm2), denudation rate ε (g/cm2/y) 250 

and exposure time t(y). Psp, Pμslow, Pμfast and Ln, Lμslow, Lμfast are the production rates and 251 

attenuation lengths of neutrons, slow muons and fast muons, respectively. Ln, Lμslow, Lμfast 252 

values used are 160, 1500 and 4320 g/cm2, respectively Braucher et al., 2003. λ is the 253 

radioactive decay constant. Pμslow, Pμfast are based on Braucher et al., 2011. 254 

 255 

4. RESULTS  256 

4.1 RW distribution 257 



From the 21 units considered in this study, 11 preserve glacial landforms (Table 1). In the EC, 258 

only Rodnei, Maramureş, and Călimani massifs present visible glacial landforms (cirques, 259 

valleys and moraine deposits), most of which are in Rodnei Mts. (Mîndrescu 2016). The best 260 

preserved landforms are in Făgăraş Mts., where 207 glacial cirques were mapped (Mîndrescu 261 

et al. 2010), in Retezat Mts., which show extensive moraine deposits, glacial lakes and complex 262 

glacial valleys (Urdea, 2000), and in Parâng Mts., which keep the largest glacial cirques in the 263 

Romanian Carpathians (Iancu, 1970). The distribution of glacial cirques in the SC particularly 264 

reflects the main ridge orientation, with moderate differences of frequencies between North and 265 

South–exposed cirques (17% on North and 11% on South respectively, reported to 45 degrees 266 

bins) and the most favourable conditions of cirque glaciers formation on the East–exposed 267 

slopes of the valleys (19.5%) due to the strong eastward aeolian snow-transport acting on the 268 

crests and plateaus (Vespremeanu-Stroe et al., 2012). In terms of area and height, the North 269 

exposures preserve generally larger and wider cirques (Mîndrescu 2016). 270 

A total of 791 RW were identified and considered as individual features, most of which were 271 

mapped in the SC. In most of the mountain units considered here, the main ridges follow East–272 

West or NE–SW direction (Table 1), tracking the principal fault lines (Fig. 1a, b). The distribution 273 

of the RW is further presented, based on mean orientation and RW altitude.  274 



 275 

Figure 2: Direction and mean altitude of the RW mapped in the EC: (a) the metamorphic schists – prevailing units; 276 

the andesitic and basaltic outcrops are represented as volcanic RW; (b) the sedimentary units (limestone and 277 

conglomerates prevailing). The radius of the graphs represents the altitude values, the general direction is expressed 278 

in sexagesimal degrees and each dot represents a RW (please refer to the colour version)  279 

The units from the EC count 88 mapped RW in total. The RW found in the schist–prevailing 280 

massifs are distributed mainly on NE (23%) and secondary on North and East (Fig. 2a) with an 281 

average altitude of 1950 m a.s.l., the North–exposed ones being situated at slightly lower 282 

altitudes. The andesitic and basaltic rock outcrops mapped in the EC, are largely grouped on 283 

the North and NE (82%) similarly with the metamorphic ones. 284 

In the sedimentary units, RW extend on all orientations, with a maximum frequency on the 285 

South (almost 40%) whilst just a few (7%) were mapped on the northern slopes (Fig. 2b), but 286 

are limited to altitudes lower than 1800 m, reaching an average of 1634 m a.s.l. which is 287 

considerably lower (> 300 m) than the metamorphic and volcanic RW. 288 

Compared to the EC, the number of RW mapped in the mountain units from the SC built on 289 

metamorphic rocks is much larger, rising to 331 from which 275 are distributed in two large 290 

massifs (Făgăraș and Iezer), and the remaining are spread in 6 units characterized by gentler 291 

topography and lower altitude (Fig. 3a, Table 2). The northern direction clearly dominates in 292 



both clusters, summing 41% from the total RW number, with similar frequencies on the NW and 293 

NE bins (Fig. 3d). The second highest RW frequency corresponds to the eastern orientation 294 

(104 RW), followed by the western slopes (77 RW). RW mapped on the southern slopes are 295 

scarce and represent 5.4% from the total number. In the large metamorphic massifs of Făgăraș 296 

and Iezer the highest RW density is in the range of 2100 – 2400 m with a mean altitude of 2200 297 

m (Table 2), but 14 mapped surfaces are higher than 2400 m. 298 

 
Units 

Main Rock 
Types 

RW 
count 

Mean 
Area 
(m2x103) 

Total Area 
(m2 x103) 

Mean 
Height 
(m) 

Mean Slope 
(degrees) 

Mean Alt 
(m) 

E
a
s
te

rn
 C

. 

Călimani Volcanic 5 4.79 23.97 35.8 39 1984 

Ceahlău / Hășmaș 
/ Ciucaș 

Limestone 
Conglomerate 

6 
47 

59.45 
41.82 

356.71 
1965.95 

162.5 
83.5 

44 
35 

1546 
1645 

Maramureș / 
Rodna 

Schist 
Volcanic 

24 
6 

15.81 
7.60 

379.55 
45.63 

55.4 
69.7 

44 
38 

1950 
1799 

S
o

u
th

e
rn

 C
. 

Bucegi 
Conglomerate 
Limestone 

42 
7 

116.16 
72,5 

4878.94 
507.51 

221.1 
175.5 

46 
48 

2096 
1935 

Piatra Craiului Limestone 13 220.82 2870.74 266.5 44 1967 

Făgăraș / Iezer Schist 275 8.0 2200.78 73.1 41 2200 

Parâng / Retezat 
Granite 
Schist 

175 
52 

12.5 
22,94 

2162.87 
1193.22 

68.0 
95.7 

38 
40 

2229 
2169 

Buila / Piule-
Iorgovanul / Țarcu 
/ Cerna Valley 

Limestone 
Conglomerate 
Schist 
Volcanic 

70 
17 
8 
2 

34.1 
14.38 
8.75 
4.83 

1909.46 
244.47 
70.04 
9.67 

124.2 
59.3 
65.3 
46.0 

46 
41 
46 
39 

1346 
1748 
1666 
1967 

Cozia / Cindrel / 
Șureanu / Lotrului 
/ Căpățânii / 
Godeanu 

Schist 56 4.61 258.25 33.0 38 1916 

Table 2: The averaged values of the morphometric parameters and total cumulated area of the mapped RW in EC 299 

and SC 300 

Parâng and Retezat Mts. in the SC (Fig. 1 for location) are two examples of mixed lithology, 301 

being composed mainly of granitoids plus granodiorites intrusions and of crystalline schist, 302 

micaschist, amphibolite (around 23% of the mapped surfaces) (Tables 1, 2) (Fig. 3b). 303 

Approximately 54% of the RW from Parâng and Retezat Mts. are North–oriented. Eastern and 304 

western exposures account for 25% and 15% of the total number, and only 5.7% of the mapped 305 

surfaces from the two massifs were identified on the southern slopes. More than half of the RW 306 

are concentrated in the 2100 – 2300 m interval and almost 18% extend above 2300 m, the 307 

northern ones reaching the highest altitudes. The RW on metamorphic rocks in the two massifs 308 



range at slightly lower altitudes and occur almost evenly on the East, North and West–oriented 309 

slopes. 310 

 311 

Figure 3: Direction and mean altitude of the RW mapped in the SC: (a) Făgăraș and Iezer Mts., with the secondary 312 

cluster of RW mapped in the lower altitude SC metamorphic units; (b) distribution of igneous and metamorphic rock 313 

surfaces in Parâng and Retezat Mts.; (d) distribution of limestone, conglomerate and sandstone RW mapped in SC; 314 

(d) Cumulated RW distribution on the four main rock categories represented on 30 degrees direction bins (please 315 

refer to the colour version)  316 



In the limestone–prevailing units from the SC, (Bădescu and Tîrlă, 2020; see Fig. 1 for location), 317 

69 RW were mapped (Fig. 3c), of which almost 40% are exposed towards West directions, 26% 318 

to the East, 23% are on northern slopes, and 11% on the southern ones (Fig. 3d). In terms of 319 

altitudinal distribution, there are also major discrepancies between the massifs, imposed by the 320 

structural characteristics of each (Table 1). The highest mean altitude is recorded in Piatra 321 

Craiului (1970 m) while Cerna Valley reaches the lowest (771 m).  322 

Bucegi is the highest sedimentary massif (2507 m) from Carpathians, with most RW developed 323 

on conglomerates and sandstones, and 15% on limestone outcrops. RW are distributed mainly 324 

on the northern slopes (37%) and only 16% are South–facing. Maximum RW density is between 325 

2100 and 2300 m for the North and East–exposed slopes. East, South and West RW are 326 

situated at lower elevations and occur on a wider altitudinal range (1800 – 2200 m). 327 

The statistical analysis shows the clear dominance of West–exposed RWs for most of the 328 

considered morphometric parameters compared to the other main orientations (Table 3). This 329 

asymmetry is however case–specific and imposed by the particular orientation of many of the 330 

sedimentary units, respectively the NNE–SSW–oriented ridges and plateaus of Piatra Craiului 331 

and Buila hogbacks, Bucegi, Ciucaș and Hășmaș synclines (Mutihac, 1990) or Cerna Valley 332 

half–graben (Povară et al., 2013), which together with the eastward and southward dipping 333 

strata contribute to the larger occurrence of West and North–exposed RWs (Fig. 1b). 334 

Ratio Mean area Height Altitude  

N/E 2.38 (**) 2.36 (**) 3.19 (***)  

S/E 1.11 (·) 1.33 (·) -3.7 (***)  

W/E 5.34 (***) 5.71 (***) -2 (*)  

S/N -0.41 (·) -0.17 (·) -6.05 (***)  

W/N 3.66 (***) 4.1 (***) -5.27 (***)  

W/S 2.76 (**) 2.83 (**) 2.18 (*)  

Table 3: Results of the statistical analysis (Post–Hoc Dunn’s Test) of morphometric parameters for pairs of main 335 

exposures. Numbers represent the z-Score, which indicates whether the tested parameter pair has a value above the 336 

rank mean (positive value), or below (negative value). For example, the mean area of N/E pair has a z-Score = 2.38, 337 

meaning that North has a greater mean area than East. In a similar way, for z-Scores below the rank mean the 338 



comparison is read inversely, as in the altitude for S/N pair which has a z-Score = -6.05, meaning that North has a 339 

higher altitude than South 340 

* p–value (0.05, 0.01]; ** p–value (0.01, 0.001]; *** p–value < 0.001. A p–value < 0.05 indicates a strong statistical 341 

significance at 95% confidence level 342 

Ratio 
 

Area Height Altitude 

Conglomerate/ Limestone 
 

-1.78 (*) -3.9 (***) 2.93 (**) 

Granite/ Limestone 
 

-7.54 (***) -6.9 (***) 12.89 (***) 

Schist/ Limestone 
 

-9.01 (***) -8.36 (***) 10.9 (***) 

Granite/ Conglomerate 
 

-5.99 (***) -2.79 (**) 10.31 (***) 

Schist/ Conglomerate 
 

-7.46 (***) -3.87 (***) 7.91 (***) 

Schist/ Granite 
 

-0.77 (·) -0.83 (·) -4.53 (***) 

Table 4: Results of the statistical analysis (Post–Hoc Dunn’s Test) of morphometric parameters for pairs of main 343 

exposures. Numbers represent the z-Score, which indicates whether the tested parameter pair has a value above the 344 

rank mean (positive value), or below (negative value) 345 

* p–value (0.05, 0.01]; ** p–value (0.01, 0.001]; *** p–value < 0.001. A p–value < 0.05 indicates a strong statistical 346 

significance at 95% confidence level 347 

In summary, our observations indicate that RW in metamorphic and igneous units are generally 348 

restricted to altitudes higher than 2100 m, show a high density on the North–exposed slopes 349 

and lack from the southern ones. In comparison, RW distribution in sedimentary units is spread 350 

over a larger range of altitudes but highly dependent on the structure and strata dip-direction 351 

which result in prevalent West and North exposures but not as large (asymmetric) as for the 352 

metamorphic and igneous rocks.  353 

4.2 RW morphometry 354 

Although the most numerous RW were identified on metamorphic rocks, this group covers only 355 

21% of the total mapped surface. An even smaller cumulated area corresponds to igneous 356 

rocks which represent 12% of the total area. Comparatively, although counting less RW, the 357 

sedimentary massifs cumulate 67% of the total mapped area due to their large mean surface 358 

(Fig. 4a, b). Consequently, igneous and metamorphic RW are 5 to 6 times smaller than 359 

limestone, conglomerates and sandstone RW (Fig. 5a). 360 



 361 

Figure 4: General RW morphometry on the main rock types (counting all features corresponding to the same rock 362 

type): (a) Mean RW altitude vs mean RW area; (b) Cumulated area of RW with the same lithology grouped on the 363 

four main cardinal directions; (c) Mean RW height and area derived for each massif (please refer to the colour 364 

version) 365 

Metamorphic and igneous units are relatively similar in terms of RW vertical extension (around 366 

70 m in average) and show little inter–site variation whereas the sedimentary units both for 367 

limestone, conglomerate and sandstone RW reach almost double height values (Fig. 4c, 5b). 368 

This visible heterogeneity is imposed by Bucegi and Piatra Craiului, with RW of up to 250 m 369 

height. This is also consistent with the wider range of mean RW altitude, as limestone surfaces 370 

extend at much lower altitudes (Fig. 5c).  371 



372 
Figure 5: Variability of the morphometry of the RW grouped in the main lithological classes in respect to the main 373 

orientations: (a) mean RW area; (b) mean height; (c) mean altitude. The boxes display the median values, the 25–75 374 

quartiles (lower – upper) and the caps show the minimum and maximum values (1.5 IQR) 375 

Summing up, the high values of the z-scores in Table 4 (maximum -9.01 for schist/limestone 376 

area, 10.9 for mean altitude) support the high morphometric differences that exist between the 377 

sedimentary units and the metamorphic and igneous ones, which are more similar (-0.77 for 378 

schist/granite area, -4.3 for altitude). Although more numerous, metamorphic and igneous RW 379 

in the study area present typically small–size surfaces perched to the highest stands of formerly 380 

glaciated valleys and cirques. The sedimentary (limestone and conglomerates prevailing) RW 381 

are wider, steeper and cover larger areas than all the other lithological groups independent of 382 

glacial landmarks and with apparent homogeneity in respect to slope orientation. These 383 

characteristics thus reflect major differences between control factors over RW morphometry and 384 

distribution depending on geology. 385 

 386 



4.3 Absolute ages 387 

Sample locations, altitudes, 10Be concentrations and 10Be surface exposure ages determined in 388 

this study and selected from the literature are presented in Table 5. Multiple values (3 to 5 per 389 

valley) available in 8 of the valleys presented here, allowed an intra and inter-massif analysis of 390 

age distributions. Values range between 0.97 ± 0.08 ka and 11.3 ± 1.0 ka (Table 5), clustering 391 

between 11.3 and 9.1 ka (21 values), thus immediately following the Younger Dryas (12.9–11.7 392 

ka, Rasmussen et al., 2006; 12.6–11.4 ka, Tǎmaş et al., 2005) and within time lags of up to 2.6 393 

ka after. A second high frequency cluster was found between 9.0 and 7.0 ka, while younger 394 

ages were identified with a frequency of 1.75 values/1000 yrs. There is not a clear correlation 395 

between the absolute ages of the rock surfaces and the altitude. Such an attempt would be 396 

hindered by the unequal sample distribution, given the fact that most of the boulders are 397 

situated above 1800 m a.s.l. Nevertheless, most of the youngest ages (0.94 ± 0.08 ka, 4.51 ± 398 

0.18 ka, 2.19 ± 0.12 ka, 1.27 ± 0.22 ka) were found in the lower or mid-sectors of Dejani, Bâlea 399 

and Sâmbăta valleys (Făgăraș Mts.), between 1200 and 1500 m a.s.l., respectively. Although 400 

few ages from the onset of the Holocene were also determined below 1400 m in the Retezat 401 

and Parâng Mts., (10.7 ± 1.4 ka, Ruszkiczay-Rüdiger et al., 2021, 10.5 ± 0.9 ka, Gheorghiu et 402 

al., 2015), most boulders dating between 11.5 and 7.0 ka are situated in the highest sector of 403 

the valleys and on cirque floors (1800–2200 m a.s.l.). This distribution pattern is similar when 404 

comparing both valleys within the same massif (e.g., Făgăraș) and valleys from the five different 405 

massifs (Table 5). 406 

The samples from Doamnei rock glacier yielded values of 12.97 ± 0.38 and 11.44 ± 0.34 ka in 407 

the front sector, which gradually decrease to 9.91 ± 0.45 in the middle part and 3.37 ± 0.10 ka at 408 

RW base. The exposure date of the source RW and the youngest rock glacier boulder age from 409 

the upmost sector indicate rockfalls activity during Late Holocene (Table 5). Comparatively, the 410 

South-exposed side of the ridge has returned a much older age (52.64 ± 0.89 ka).  411 

 412 



LOCATION 
Sample 
name 

Lat Long 
Altitude 

(m) 

Quartz 
mass 

(g) 

[10Be] atoms 
g-1 x 104 

t (exposure 
time) ka  

Source  

FĂGĂRAȘ         

Arpaș AR01 45.60 24.67 2134 23.23 8.76 ± 0.33 4.07 ± 0.13 this studya 

Bâlea Valley BL 45.64 24.60 1205 24.39 4.92 ± 0.18 4.51 ± 0.18 
 

Dejani Valley DEJ01 45.61 24.94 1300 23.05 1.13 ± 0.10 0.97 ± 0.08 
 

Dejani Valley DEJ02 45.61 24.94 1287 26.72 8.15 ± 0.31 7.11 ± 0.26 
 

Dejani Valley DEJ03 45.59 24.94 1929 26.00 16.91 ± 0.63 9.11 ± 0.34 
 

Dejani Valley DEJ04 45.60 24.94 1401 25.77 13.36 ± 0.50 10.55 ± 0.39 
 

Fundul Caprei Valley FC02A 45.60 24.64 1850 23.11 15.71 ± 0.59 9.04 ± 0.33 
 

Mioarele cirque MIO01 45.58 24.83 2287 26.41 24.28 ± 0.91 10.14 ± 0.38 
 

Mioarele cirque MIO02 45.58 24.83 2274 22.88 24.18 ± 0.76 10.14 ± 0.31 
 

Mioarele MIO03 45.58 24.83 2285 24.74 24.33 ± 0.91 10.15 ± 0.38 
 

Orzăneaua cirque ORZ02 45.60 24.72 1985 25.55 16.98 ± 0.64 8.79 ± 0.33 
 

Sâmbăta Valley VS02 45.61 24.80 1823 25.11 16.60 ± 0.62 9.65 ± 0.36 
 

Sâmbăta Valley VS01 45.61 24.80 1796 23.66 16.77 ± 0.57 9.95 ± 0.33 
 

Sâmbăta Valley SA07 45.64 24.79 1215 26.22 2.46 ± 0.09 2.19 ± 0.12 
 

Sâmbăta Valley SA05 45.62 24.79 1485 14.56 1.87 ± 0.07 1.27 ± 0.22 
 

Sâmbăta Valley SA04 45.36 24.47 1820 - - 10.00 ± 0.30 
 

Urlea cirque U04 45.60 24.84 2077 25.44 16.00 ± 0.60 7.92 ± 0.29 
 

Urlea cirque U01 45.60 24.84 2134 22.88 19.68 ± 0.59 9.36 ± 0.28 
 

Urlea cirque U06 45.60 24.85 2062 27.87 22.14 ± 0.83 10.86 ± 0.40 
 

Urlea cirque U01A 45.60 24.84 2130 23.07 22.94 ± 0.86 10.95 ± 0.41 
 

Doamnei RW N DBEN 45.35 24.36 2230 20.48 3.59 ± 0.24 2.07 ± 0.13  

Doamnei RW S DBES 45.35 24.36 2243 20.24 121.18 ± 2.06 52.46 ± 0.89  

Doamnei RG1 DBE1 45.36 24.36 2057 20.33 20.39 ± 0.94 9.91 ± 0.45  

Doamnei RG2 DBE2 45.36 24.36 2062 20.61 26.71 ± 0.79 12.97 ± 0.38  

Doamnei RG3 DBE3 45.36 24.36 2082 21.07 23.88 ± 0.71 11.44 ± 0.34  

Doamnei RG4 DBE4 45.35 24.36 2133 20.70 7.01 ± 0.22 3.37 ± 0.10  

BUCEGI 
        

Gaura Valley  Gaura05 45.43 25.40 1541 25.41 15.76 ± 0.61 10.78 ± 0.43 
 

Gaura Valley  Gaura06 45.43 25.40 1545 25.74 15.50 ± 0.46 10.62 ± 0.33 
 

Gaura cirque  Gaura03 45.44 25.43 2072 15.44 15.72 ± 0.49 7.49 ± 0.23 
 

Gaura cirque  Gaura01 45.44 25.43 2081 25.39 15.60 ± 0.53 8.00 ± 0.25 
 

PARANG 
        

Iezer Valley PR01 45.34 23.63 2034 10.99 24.34 ± 1.08 11.20 ± 0.50 
Gheorghiu et 
al. (2015)b 

Iezer Valley PR03 45.34 23.62 1970 14.33 13.61 ± 0.46 6.20 ± 0.20 
 

Iezer Valley PR05 45.34 23.62 2008 10.6 19.64 ± 0.63 8.80 ± 0.80 
 

Gâlcescu cirque PR10 45.35 23.61 1990 8.21 24.29 ± 0.69 11.20 ± 0.30 
 

Zănoaga Mare cirque PR15 45.35 23.59 2055 10.19 23.63 ± 0.70 10.20 ± 0.30 
 

Zănoaga Mare cirque PR16 45.35 23.59 2055 10.56 23.94 ± 0.83 10.40 ± 0.30 
 

                                                           
Table 5: Sampling locations, 10Be concentrations, and 10Be surface exposure ages for post–Younger Dryas dated 

boulders in the Romanian Carpathians 

a
 Analytical uncertainties (reported as 1-σ) included for all samples. No corrections for potential effects of snow cover or denudation 

were applied to the ages 

b
 Exposure ages calculated using Cronus-Earth 10Be - 26Al exposure age calculator v. 2.2 (http://hess.ess.washington.edu/). They 

assume zero erosion, scaling factors according to Stone (2000) and a spallation production rate of 4.49 ± 0.39 atom (g SiO2) -1 a-1 

(Balco et al., 2008). Exposure ages are presented with the external uncertainties 



RETEZAT 
        

Lăpușnicu Valley Re15-29 45.31 22.78 1167 - 10.30 ± 0.13 10.70 ± 1.40 
Ruszkiczay-
Rüdiger et al., 
(2021)c 

Pietrele Valley Pt-03-02 45.28 22.88 1902 - 23.9 11.40 ± 1.30 
Reuther et al. 

(2007)d 

RODNA 
        

Pietroasă Valley RD 30 47.61 24.64 1379 25.11 16.32 ± 0.50 10.50 ± 0.90 
Gheorghiu, 
(2012)ee 

Zănoaga Mare cirque RD 04 47.6 24.64 1669 28.95 21.65 ± 0.63 11.50 ± 1.00  

Zănoaga Mare cirque RD 06 47.6 27.63 1767 24.24 22.83 ± 0.63 11.30 ± 1.00  

Zănoaga Mare cirque RD 07 47.6 27.63 1767 25.85 22.50 ± 0.65 11.10 ± 1.00  

Zănoaga Mare cirque RD 05 47.6 27.63 1753 24.36 10.89 ± 0.40 5.70 ± 0.50  

Buhăiescu Valley RD 19 47.58 24.65 1718 23.01 21.61 ± 0.63 10.40 ± 0.90  

                                                           
c The measured 10Be/9Be AMS ratios were corrected for full processed blank ratios: (3.30±0.50) x 10-15. Age uncertainties: the 1st 

number is the internal uncertainty (AMS measurement, weighting, carrier, blank and half-life; 1-σ). Every reported age was corrected 

for topographic- and self-shielding 

d Exposure age corrected for the effect of topographic shielding and surface geometry 

e Exposure ages calculated using Cronus-Earth 10Be – 26Al exposure age calculator v. 2.2 (http://hess.ess.washington.edu/). They 

assume zero erosion, scaling factors according to Stone (2000) 

 

5. DISCUSSION 413 

5.1 Structure and lithology influence on RW distribution 414 

The RW inventory and morphometric analysis results have emphasized the significant influence 415 

of the lithology and geological structure on the characteristics of metamorphic, igneous and 416 

sedimentary RW in the Romanian Carpathians, the first two rock categories producing much 417 

smaller RW, but developed at higher altitudes, than sedimentary massifs which account for the 418 

greatest rock surface coverage overall. Our results also showed that the distribution of RW in 419 

the Carpathians is very particular in respect to orientation, with an obvious asymmetry between 420 

North and South exposures especially for metamorphic and igneous rocks, yet with extent RW 421 

on all orientations in limestone or conglomerate massifs. 422 

Despite the North / South balanced distribution of the glacial cirques (Mîndrescu, 2016), we 423 

showed that RW present a high asymmetry in the metamorphic and igneous mountain units 424 

from the both SC and EC (Fig. 2a, 4b, d), where South–exposed slopes are much less frequent 425 

whilst the total covered area is almost 30 times higher on the North–exposed RW. 426 



Correspondently, the present rock glaciers distribution in these units accounts for 58% of the 427 

mapped rock glaciers in the northern quadrant, and only 13% in the southern one (Onaca et al., 428 

2017), which also suggests a more intense/frequent debris accumulation on the North exposed 429 

slopes during Younger Dryas and Early Holocene when presumably most of the rock glaciers 430 

formed (Onaca et al., 2013). A similar distribution is described in the Adamello–Presanella 431 

massif (Italian Alps), where the main ridge follows the NE-SW direction of the North-bordering 432 

fault and valleys radiate from the main ridge, covering all the cardinal directions. Here, based on 433 

the inventory of 216 rock glaciers mostly consisting of intrusive granodioritic and tonalitic rocks, 434 

Baroni et al., (2004) show that both active and relict rock glaciers are predominantly facing the 435 

North, NW and NE compared to the southern quadrant (which counts 18% of the active / 436 

inactive, and 15% of the relict ones), and argument, by comparing front altitudes, that local 437 

topoclimate makes northern slopes more favourable to rock glacier formation and preservation. 438 

We further consider that RW preservation conditions are also more restrictive on the southern 439 

slopes in igneous and metamorphic slopes, as commented below. 440 

Both granite and schist RW in the study area are characterized by metric joints networks which 441 

fit well with the dimensions of the boulders enclosed into the adjacent debris deposits (Vasile 442 

and Vespremeanu-Stroe, 2017), supporting intense slope modelling which could have led to the 443 

formation of large debris deposits, talus cones and rock glaciers. In a simulation of moisture 444 

availability in alpine RWs, (Rode et al. 2016) highlight that the preconditions of water saturation 445 

and temperature required for ice segregation are often recorded on the North-exposed slopes 446 

but just rarely met on warmer South–exposed rock surfaces, which implies that the latter are not 447 

prone for large–size debris production. Thus, South–exposed rock slopes would be subject to 448 

small–scale flake and granular rock shattering under the effect of both superficial freezing 449 

during snow melting intervals (Matsuoka, 2008) and of diurnal insolation thermal stress during 450 

snow–free intervals (Eppes et al., 2016). We assume that South–exposed RW in the Romanian 451 

Carpathians were generally more stable than the other exposures whilst the northern were the 452 



most active due to longer permafrost preservation. This is also supported by the old age (52.46 453 

± 0.89 ka) age yielded by the South-exposed ridge outcrop above Doamnei rock glacier, which 454 

was apparently unaffected by LGM, when it most probably stood as nunatak. Humification 455 

process (i.e. humus formation in soil profiles) has been inferred to be more intense on South–456 

exposed mountain slopes, where warmer conditions intensify oxidation and create a more 457 

optimal environment for microorganisms that degrade organic matter (Egli et al., 2010), 458 

compared to North–exposed mountain slopes which incorporate undecomposed or weakly 459 

degraded organic matter and are subject to mineral leaching due to colder and wetter 460 

conditions. Savi et al. (2015) reconstruct frost-cracking intensity and debris production during 461 

the Holocene in the Eastern Italian Alps, and emphasizes that high debris accumulation 462 

occurred during Early Holocene and also during Atlantic and Subatlantic periods when positive 463 

MAAT would have promoted continuous superficial (up to 100 cm deep) frost cracking in the 464 

highest peaks (around 3000 m a.s.l.). A similar pattern is supported in the SC by the surface 465 

exposure ages that sustain production of large debris in all massifs during Early Holocene and 466 

secondary debris production in subsequent phases.  467 

The cumulated effect of these processes could explain a generally faster cover with soil and 468 

vegetation on the sunny slopes of both metamorphic and igneous units from this study, whereas 469 

on the North, colder thermal regime and the production of large–size boulders led 470 

simultaneously to a better preservation of RW, which is reflected in present–day distribution and 471 

morphometry. 472 

The large synclines represented by Bucegi and Ciucaș Mts., with main North to South dip 473 

direction of the conglomerate and sandstones bedding planes uplifted large RW on the North–474 

facing cuesta fronts, typical for sedimentary units formed as synclines, perched synclines, or 475 

hogbacks which are generally dominated by the compactness and steepness of the cuesta 476 

escarpments (Huggett, 2007). This is also the case in the NE–SW–dipping limestone massifs in 477 

SC which enhanced the development of the largest RW on their western slopes. Limestone RW 478 



in both EC and SC generally lack dense superficial joint networks which, along with increased 479 

permeability, limits water availability within the first centimetres of rock and implicitly turns ice 480 

segregation less probable, which implies reduced RW modelling by frost shattering and debris 481 

accumulation in sedimentary massifs (Johnson et al., 2007). This is reflected by the low number 482 

of rock glaciers formed / identified in the SC on sedimentary rocks (only 15 on limestone from a 483 

total statistical population of 306 rock glaciers; Onaca et al. 2017). Therefore, we consider the 484 

lithology and structure to play the major role in imposing the orientation–related homogeneity 485 

which accounts as the primary control in RW distribution and dimensions in the sedimentary 486 

units from this study. Secondary, post-glacial RW relaxation would have led to the detachment 487 

of massive limestone and conglomerate blocks as sustained by the absolute ages obtained in 488 

Bucegi Mts (Table 5). However, in specific cases, such as Piatra Craiului limestone hogback, 489 

large debris deposits have accumulated at the base of the main tectonic slopes. For such 490 

cases, we assume that the absence of transversal valleys and of the Pleistocene glaciers, both 491 

caused by topography, could have created the conditions for the long–term (e.g. Middle to Late 492 

Quaternary) debris accumulation, the formation of which is still to be deciphered. 493 

5.2 Holocene dynamics of RW depicted by rock-slope failures 494 

Following Last Glacial Maximum deglaciation (19-14.5 ka), small glaciers re-occupied the 495 

highest cirques (> 2050 m) during Younger Dryas excepting the southern ones (Gheorghiu et 496 

al., 2015; Popescu et al., 2017a; Pascal et al., 2018). The largest Younger Dryas glaciers are 497 

likely to have lasted more than a millennium during Early Holocene (e.g. 10.2 ± 0.9 kyrs, 498 

Gheorghiu et al., 2015). Therefore, we consider that most of the boulders from high altitudes (> 499 

2000 m) of early Holocene age dated in this study have originated by RW destabilization as 500 

response of ice retreat which occurred mainly in the upper valley/cirques sectors where glaciers 501 

were restricted (Fig. 6). High frequency of such events occurring several thousand years after 502 

Younger Dryas period are well documented in the European Alps (Soldati et al., 2004; Cossart 503 

et al., 2008; Hormes et al., 2008; Prager et al., 2008; Ivy-Ochs et al., 2009), Tatra Mts. (Pánek 504 



et al., 2016), in Scotland (Ballantyne et al., 2014) and Scandinavia (Mercier et al., 2013; Hilger 505 

et al., 2018, 2021; Vick et al., 2022), but also in Karakorum (Shroder et al., 2011) or the Andes 506 

(Fauqué et al., 2009). Many of these sites record re-activations or secondary clusters during the 507 

Sub-Boreal period (Hermanns and Longva, 2013). 508 

In Fig. 6 we compare frequency curves of the post Younger Dryas boulders dated in the 509 

Romanian Carpathians and of the RSF ages compiled from these studies after excluding the 510 

mountain ranges which are influenced by excess of humidity/dryness and correspondently by 511 

their variability in time (e.g., Himalaya, Atlas or Cascade Mts). Overall, the Romanian 512 

Carpathians show a similar general trend with the other world-wide catenae but with an 513 

apparently more rapid and accentuated response to the Early Holocene warming and more 514 

humid conditions, so that almost 3/4 of the dated RSF occurred before 8 ka with the highest 515 

frequency window positioned during 11.6-9 ka. Conversely, the multi-sites curve reflects a 516 

higher sensitivity of RW (deduced via RSF occurrence) to the Holocene Climatic Optimum, 517 

which can be explained both by delays in local deglaciation momentum and topoclimatic 518 

conditions. Given the relatively small number of samples used in our study (38), this first attempt 519 

to assess the RSF evolution in the Romanian Carpathians might also be biased towards the 520 

Early Holocene by the high frequency of the high-altitude samples (71% of the samples are 521 

>1700 m). As future research, it is necessary to expand the RSF dating by including more cases 522 

from the mid and low levels and to compare their histories in order to disentangle the influence 523 

of deglaciation, permafrost thawing, thermal and humidity variation. However, some of the 524 

European studies describe some similar results with the newly-obtained in the Romanian 525 

Carpathians, such as Hermanns and Longva (2013) which give an estimation of Holocene RSF 526 

magnitude in Storfjörden, Norway, showing that the earliest events (12.5 to 10 kyrs) generated 527 

by far the largest detached volumes (Fig. 6), compared to the ones dating after 8 kyrs. Similarly, 528 

reconstructed magnitudes of large landslides from the Alps (Soldati et al., 2004; Ivy-Ochs et al., 529 

2009), place such events in the first millennia of the Holocene. 530 



Independently of the absolute exposure ages used to assess the RSF probability occurrence 531 

during Holocene (Fig. 6), the other four surface ages from Doamnei rock glacier, in the central 532 

Făgăraș massif, indicate multiple phases of debris accumulation, and, in the same time, the 533 

high magnitude of early–Holocene debris production, which supplied at least the lower half of 534 

the rock glacier body, demonstrated by the rapid accumulation of massive boulders as well as 535 

their displacement between 12.97 and 9.91 ka ago. RW permafrost decay would have further 536 

enhanced subsequent rockfall or rock avalanches of smaller magnitude during the following 537 

warm episodes of the Holocene as also described in the Swiss Alps by Nagelisen et al., (2015). 538 

The particularly large boulders in the lower half of Doamnei rock glacier are incompatible with 539 

frost-cracking intensities estimated for the Holocene (Savi et al., 2015) and were most probably 540 

produced by similar high magnitude (as described by Hermanns and Longva, 2013) slope 541 

failures induced by slope relaxation, permafrost degradation and overall weakened slope 542 

coherence. We consider this to be the ultimate process/interval of intense modelling in the 543 

alpine area of the Carpathians which defined the rock walls – rock glaciers/debris systems 544 

preserved until present. 545 

 546 



Figure 6 Cumulated distribution of surface exposure ages attributed to post-Younger Dryas RSF in the Romanian 547 

Carpathians (blue line), and multi-site composed RSF distribution (red line) using absolute ages from the French Alps 548 

(Cossart et al., 2008), Swiss Alps (Ivy-Ochs et al., 2009), Italian Alps (Hormes et al., 2008), Central Andes (Fauque et 549 

al., 2009), Northern Iceland (Mercier et al., 2013), Central Karakoram (Shroder et al., 2011), Scotland and NW Ireland 550 

(Ballantyne et al., 2014). Grey-filled columns represent estimated volume of Holocene RSF in Norway (after 551 

Hermanns and Longva, 2013) 552 

 553 

6. CONCLUSIONS 554 

The distribution of RW mapped in the Southern and Eastern Carpathians depends mainly on the 555 

lithology, structure but also weathering processes. In the metamorphic and igneous units, it 556 

ultimately relates to geomorphological context, being mostly associated with glacial cirques and 557 

valleys headwalls. Most RW are therefore restricted to the highest ridge sectors, while their low 558 

heights and areas are explained as a consequence of the lithological predisposition to debris 559 

production, especially in permafrost degrading conditions during warming phases of the Early 560 

Holocene. The North/South asymmetry in rock glaciers distribution (also signalled in other mid-561 

latitude ranges) is reflected by the lack of South-exposed RW. We assume more stable 562 

conditions prone to fine debris and soil formation on the southern slopes due to insolation and 563 

warmer conditions. 564 

For the sedimentary RW, tectonics and the geological structure are the main controls to explain 565 

the occurrence of the large (wide and high) limestone and conglomerate RW in the Romanian 566 

Carpathians. Except for Bucegi Mts, which were high and large enough to host complex glaciers 567 

during the last glaciation, most of the sedimentary units from SC and EC were not subject to 568 

glacial erosion during LGM due to either steep topography (e.g., hogback ridges) or lower 569 

altitude, although RW permafrost was probably widespread. 570 

Absolute exposure ages confirm that an intense rock slope degradation via rock-slope failures 571 

took place in the Carpathian metamorphic and igneous units in Early Holocene, similar with 572 

other European sites, reaching the highest magnitudes 11.6 – 9 ka ago especially above 1800 573 



m altitude. We associate the present distribution of RW with this periglacially-active period 574 

which was the last time of rock surfaces substantial reshape.  575 
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