Exploring the Temperature Effect on Enantioselectivity of a Baeyer‐Villiger Biooxidation by the 2,5‐DKCMO Module: The SLM Approach - Aix-Marseille Université Accéder directement au contenu
Article Dans Une Revue ChemBioChem Année : 2022

Exploring the Temperature Effect on Enantioselectivity of a Baeyer‐Villiger Biooxidation by the 2,5‐DKCMO Module: The SLM Approach

Résumé

Temperature is a crucial parameter for biological and chemical processes. Its effect on enzymatically catalysed reactions has been known for decades, and stereo-and enantiopreference are often temperature-dependent. For the first time, we present the temperature effect on the Baeyer-Villiger oxidation of racbicyclo[3.2.0]hept-2-en-6-one by the type II Bayer-Villiger monooxygenase, 2,5-DKCMO. In the absence of a reductase and driven by the hydride-donation of a synthetic nicotinamide analogue, the clear trend for a decreasing enantioselectivity at higher temperatures was observed. "Traditional" approaches such as the determination of the enantiomeric ratio (E) appeared unsuitable due to the complexity of the system. To quantify the trend, we chose to use the 'Shape Language Modelling' (SLM), a tool that allows the reaction to be described at all points in a shape prescriptive manner. Thus, without knowing the equation of the reaction, the substrate ee can be estimated that at any conversion.
Fichier principal
Vignette du fichier
ChemBioChem - 2022 - R llig - Exploring the Temperature Effect on Enantioselectivity of a Baeyer‐Villiger Biooxidation by-1.pdf (1.64 Mo) Télécharger le fichier
Origine : Publication financée par une institution

Dates et versions

hal-03784017 , version 1 (21-11-2022)

Identifiants

Citer

Robert Röllig, Caroline Paul, Katia Duquesne, Selin Kara, Véronique Alphand. Exploring the Temperature Effect on Enantioselectivity of a Baeyer‐Villiger Biooxidation by the 2,5‐DKCMO Module: The SLM Approach. ChemBioChem, 2022, 23 (15), ⟨10.1002/cbic.202200293⟩. ⟨hal-03784017⟩
11 Consultations
42 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More