
HAL Id: hal-03798754
https://amu.hal.science/hal-03798754

Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Application of Deep Learning to Spectroscopic Features
of the Balmer-Alpha Line for Hydrogen Isotopic Ratio

Determination in Tokamaks
M. Koubiti, Malo Kerebel

To cite this version:
M. Koubiti, Malo Kerebel. Application of Deep Learning to Spectroscopic Features of the Balmer-
Alpha Line for Hydrogen Isotopic Ratio Determination in Tokamaks. Applied Sciences, 2022, 12,
pp.9891. �10.3390/app12199891�. �hal-03798754�

https://amu.hal.science/hal-03798754
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 
 

 

 
Appl. Sci. 2022, 12, 9891. https://doi.org/10.3390/app12199891 www.mdpi.com/journal/applsci 

Article 

Application of Deep Learning to Spectroscopic Features of the 
Balmer-Alpha Line for Hydrogen Isotopic Ratio Determination 
in Tokamaks 
Mohammed Koubiti * and Malo Kerebel 

PIIM Laboratory, Aix-Marseille University/CNRS, CEDEX 20, 13013 Marseille, France 
* Correspondence: mohammed.koubiti@univ-amu.fr 

Abstract: We propose in this paper the use of artificial intelligence, especially deep learning algo-
rithms, for the isotopic ratio determination for hydrogen–deuterium mixtures. Our approach is 
based on the Balmer-α line emitted by hydrogen and deuterium, but unlike the standard method, it 
does not consist of fitting the Hα/Dα line spectra. Instead, only some basic spectroscopic features 
such as the line peak-to-dip wavelength separation, peak-to-peak and dip-to-peak intensity ratios 
of the Zeeman–Doppler-broadened Hα/Dα line spectra are used by the regression algorithm for 
training. We demonstrate the proof-of-principle of our approach by applying deep learning from 
the open-access machine-learning platform TensorFlow to Hα/Dα line profiles, which we have 
synthetized with pre-determined parameters such as neutral temperatures, the magnetic field 
strength and the H/(H + D) isotopic ratio. The used regression algorithm allowed us to retrieve with 
a good accuracy the isotopic ratios used for the synthetized line profiles. 

Keywords: plasma spectroscopy; isotopic ratio; machine learning; artificial intelligence;  
deep-learning; fusion plasmas; tokamaks; hydrogen isotopes; Zeeman–Doppler line profiles 
 

1. Introduction 
Nowadays magnetic fusion devices operate with either pure hydrogen, pure deu-

terium or with hydrogen–deuterium mixtures. However, magnetic fusion-based power 
plants will operate with D–T mixtures as fusion reaction rates are optimal when D+ and 
T+ ions fuse together as compared to fusion between D+ ions. Up to now, only a few op-
erations have been conducted or are being prepared with deuterium–tritium (D–T) 
mixtures like in JET during the 1997 DTE1 campaign and the DTE2 planned experimental 
campaign [1–3]. However, due to the radioactivity of tritium, its content in any device is 
limited for obvious safety reasons. Therefore, the content of tritium is strictly controlled. 
For this reason, an accurate inventory of the content of tritium is mandatory. Such an 
inventory cannot be made by simply subtracting the quantity exhausted by the pumping 
systems from the injected quantity because of the wall retention of all hydrogen isotopes 
[4]. In plasmas with D–T mixtures, one can quantify the content of tritium by the isotopic 
ratio, defined as: 
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𝐼𝑅D-T = ௡D(௡Dା௡T). (1)

This is the ratio between the density of deuterium atoms 𝑛D and the total density of 
deuterium plus tritium atoms (𝑛D + 𝑛T). Another way to define the isotopic ratio is to 
use: 𝐼𝑅T-D = ௡೅(௡Dା௡T).  (2)

In practice, as: 𝐼𝑅D-T + 𝐼𝑅T-D = 1, (3)

one can use either the first or the second definitions of the isotopic ratio, i.e., 𝐼𝑅D-T or 𝐼𝑅T-D. In a similar manner to D–T mixtures, one defines the following isotopic ratios for 
hydrogen–deuterium (H–D) mixtures∶ 𝐼𝑅H-D = 𝑛H/(𝑛H + 𝑛D)  (4)𝐼𝑅D-H = 𝑛D/(𝑛H + 𝑛D) (5)

In Equations (4) and (5), 𝑛H stands for the neutral hydrogen density. Note also that 𝐼𝑅H-D and 𝐼𝑅D-H satisfy the following condition: 𝐼𝑅H-D + 𝐼𝑅D-H = 1  (6)

It should also be noted that in some references, instead of Equations (4) and (5) con-
cise notations are used for the isotopic ratios for H–D mixtures: 𝐼𝑅H-D = 𝐻(𝐻 + 𝐷) (7)

𝐼𝑅D-H = 𝐷(𝐻 + 𝐷) (8)

The same remark applies to D–T mixtures. To our knowledge, two methods are used 
for the evaluation of such isotopic ratios in magnetic fusion devices. The first one is based 
on the residual gas analysis and have been applied by Drenik et al. [5] to JET and 
ASDEX-Upgrade (AUG) devices. This technique has also been used for other devices like 
Tore-Supra by Klepper et al. [6]. However, it is the second method which is widely and 
commonly used for the evaluation of the hydrogen isotope contents. It is based on the 
spectroscopic analysis of the emitted Balmer-alpha line. In tokamaks, this line is one of 
the most intense emission lines of hydrogen isotopes (H, D and T). The intensities of the 
corresponding Hα, Dα and Tα lines depend on the concentration of each isotope. In to-
kamaks, the major emission of these lines comes from the divertor and scrape-off-layer 
(SOL) regions. In these regions, especially in the divertor where plasma–surface interac-
tions take place, several neutral populations co-exist due to the different recycling 
mechanisms taking place as can be found in Kubo et al. [7], Koubiti et al. [8] and Hey et 
al. [9]. Under typical divertor conditions, i.e., electron densities 𝑛௘ of the order of 1014 
cm−3 and electron temperatures 𝑇௘ of a few eV, the spectral profiles of the hydrogen 
isotope Balmer-α lines Hα, Dα and Tα are governed by Zeeman and Doppler effects, as 
Stark effects can be neglected for such low electron densities; see Koubiti and Sheeba [10]. 
Therefore, by fitting an experimental Balmer-α line emitted by hydrogen isotopes, it is 
possible to infer various parameters like the temperatures and fractions of the different 
neutral populations in the emissive zone, and more importantly the fraction of each hy-
drogen isotope and, hence, the isotopic ratio. Therefore, by applying this spectroscopic 
technique to spectra measured along various lines of sights, one can draw a cartography 
of the content of a given hydrogen isotope of the considered device. For instance, 
Neverov et al. [11,12] have applied this technique to JET data. In the previous references 
[7–9], even if the main objective was to determine the different neutral populations and 
characterize the dominant recycling mechanisms, the fractions of hydrogen isotopes were 
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also determined. Usually, it is necessary to consider the co-existence of at least two neu-
tral populations, each with its velocity distribution for each hydrogen isotope to fit the 
observed spectra. The presence of the magnetic field may lead to even more complica-
tions if its intensity is not sufficiently enough that the strong field approximation can be 
used. It is obvious that this technique relies on the fit of the whole line profiles of the 
considered line, i.e., the Balmer-α emitted by hydrogen isotopes. Besides, for its cost in 
terms of CPU time, this technique is convenient for post-operation interpretation of the 
measured spectra and cannot be used for real-time plasma controls. In a nuclear fusion 
reactor working with D–T mixtures, a real-time control of the tritium content must be 
necessary to ensure good performances and meet safety conditions. In this context, a fast 
method allowing the determination of the isotopic ratio is necessary. In this paper, we 
propose to combine artificial intelligence with plasma spectroscopy to determine the 
isotopic ratio of hydrogen in tokamaks and stellarators for two objectives: promote 
plasma control through the monitoring of the hydrogen isotope content and predict fu-
ture operations from available experimental data. Here, we will only present the proof of 
principle of the proposed method. In this method, instead of searching to fit the whole 
spectrum of the Balmer-α line, we used only some of its spectroscopic characteristics as 
input features in a deep-learning algorithm to determine the isotopic ratio for H–D mix-
tures. It is not the first time that machine-learning is introduced in plasma physics and 
plasma spectroscopy. Indeed, in 2021, Kajita et al. [13] used a multiple regression algo-
rithm from the open source Sickit-Learn package machine-learning library [14] to analyze 
helium emission lines to determine the plasma electron density and temperature in the 
linear divertor simulator Magnum-PSI [15]. In [15], Kajita et al. used the standard neutral 
helium line intensity ratio technique for electron density and temperature determination. 
This technique requires the combination of spectroscopic intensity measurements of 
specific helium lines and a collisional–radiative modeling of the excited upper levels in-
volved in the considered radiative transitions. The same regression technique was also 
used by Nishijima, Kajita and Tynan [16] to predict electron density and temperature 
from helium lines, this technique being validated using independent measurements us-
ing Langmuir probes. In [13], the assessment was realized thanks to independent meas-
urements made with a Thomson Scattering system. In other physics fields, machine 
learning has been used for several years. For instance, in astrophysics, Gurung-López et 
al. [17] have published a work about an open-source code using deep learning for fitting 
profiles of the hydrogen Lyman-alpha line emitted in galaxies. One can also refer to the 
work of Cianciosa et al. [18] on the use of machine learning for the analysis of atomic 
spectral lines. It may be useful to mention some other references dealing with ma-
chine-learning in plasma spectroscopy such as MacBride et al. [19], Ren et al. [20] or 
Samuell et al. [21]; this short list is not exhaustive. The introduction of machine learning 
in plasma spectroscopy is not aimed to replace physical models but to help increase the 
speed of obtaining the same information as the physical models with a good accuracy to 
allow real-time control and monitoring. In addition, it is possible to make predictions for 
conditions of inaccessibility and in preparation for future experiments. This paper is or-
ganized as follows: in Section 2, we describe the physical model behind the determina-
tion of the hydrogen isotopic ratio, i.e., the theoretical computation of the line profiles of 
the Hα/Dα line for H–D mixtures, and the results can be easily extrapolated to Dα/Tα 
lines in D–T mixture experiments. In Section 3, we briefly present the concepts of ma-
chine learning by considering supervised machine learning and deep machine learning 
with a focus on neural networks. In Section 4, we apply machine learning to the Balmer-α 
emission line spectroscopy to demonstrate the proof-of-concept of our approach. This 
will be done through the generation of about two hundred thousands of synthetic Hα/Dα 
line profiles computed with given magnetic field strengths, different couples of neutral 
temperatures (cold and warm populations) and a fraction of neutral hydrogen atoms 
varying from 1 to 25% for deuterium plasmas with hydrogen. In Section 5, we will dis-
cuss our technique, its limitations and its potential applications such as predicting the 
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tritium isotopic ratio in ITER from the analysis of available experiments carried out on 
the various fusion devices, including AUG and JET, whether operated with a mixture of 
hydrogen and deuterium or of deuterium and tritium. A conclusion will be drawn in the 
Section 6. 

2. Classical Physical Model for the Hydrogen Isotopic Ratio Determination 
For simplicity, we consider here tokamak plasmas where the dominant gas is deu-

terium with the presence of hydrogen as a trace up to a significant concentration of 25%. 
The results can easily be extended to the opposite situation, where the dominant gas is 
hydrogen with the presence of deuterium with concentrations varying between 1 to 25%. 
Therefore, we will consider here plasmas with H–D mixtures for which we aim to infer 
one of the previously defined isotopic ratios: 𝐼𝑅H-D or 𝐼𝑅D-H (see Section 1). In such to-
kamak plasmas, the Balmer-α line is emitted by hydrogen and deuterium neutrals that are 
present in the tokamak divertor region. We will explain later why there exist neutrals and 
even molecules in the peripheral regions of tokamak. More precisely, Balmer-α photons 
are emitted as a result of electrons decaying from the upper excited level 𝑛 = 3 of the 
atom to its lower excited level 𝑛 = 2, 𝑛 and 𝑛′ being the principal quantum numbers. 
Because of the different reduced masses for hydrogen, deuterium and tritium, the wave-
lengths of the Hα/Dα/Tα emission lines are separated by a small isotope shift. In Ang-
strom units, the wavelengths of the Hα/Dα/Tα lines are respectively 𝜆ுഀ = 6562.8, 𝜆஽ഀ =6561.04 and 𝜆்ഀ = 6560.45 [22,23]. This means that the non-perturbed wavelengths of 
Hα and Dα lines 𝜆ுഀ and 𝜆஽ഀ are separated by about 1.8 Å while the Tα line is distant 
from the Dα line by only about 0.6 Å, i.e., (𝜆஽ഀ − 𝜆்ഀ ) is about one-third of the separa-
tion (𝜆ுഀ − 𝜆஽ഀ) between Hα and Dα lines. Now, let us explain the origin of presence of 
hydrogen isotope neutrals in the peripheral regions of tokamaks. The interesting plasma 
of a tokamak is the high-temperature magnetically confined plasma called the core plas-
ma. The confined plasma core does not contain any neutrals but only ions and electrons. 
The core plasma is confined inside closed magnetic flux surfaces. Besides these closed flux 
surfaces, there are open magnetic field lines which hit the plasma facing components. The 
charged particles rotating around these open field lines interact with the plasma wall 
materials, especially in the divertor region. The plasma–wall or plasma–surface interac-
tions are at the origin of the presence of neutrals. More precisely, hydrogen and deuter-
ium neutrals are produced through several chemical and physical sputtering mechanisms 
[7–9] leading to the co-existence of at least two neutral populations. The first is a cold 
neutral population resulting from molecular dissociation of desorbed molecules from the 
divertor target (release of trapped neutrals as molecules) whose velocity distribution can 
be considered as Maxwellian with a temperature of a fraction of eV to few eVs. The sec-
ond neutral population originates from reflected atoms, i.e., H+ or D+ ions capture elec-
trons when hitting the target, and are released (return back to the plasma) as H or D neu-
trals. Such a population can thermalize before emitting radiation (Hα/Dα photons) in 
which case their velocity distribution can be assumed to be Maxwellian (or close to a 
Maxwellian) with a temperature of some tens of eVs. A third neutral population due to 
charge exchanges between plasma ions and released neutrals may exist; its velocity dis-
tribution is also Maxwellian with a temperature of about 100 eV. This third population 
gives rise to a broad and weak line profile and therefore was not considered in our cal-
culations of synthetic Hα/Dα line profiles. 

In addition to the co-existence of the neutral populations described above for each 
hydrogen isotope, the profile of the emitted Balmer-α lines are also subject to the Zeeman 
effect caused by the magnetic field. It is out of the scope of this paper to describe in detail 
the effect of an external magnetic field on an emission line, as one can refer to standard 
textbooks treating this topic. Instead, we refer the readers to our previous paper [10] and 
the references therein for a brief description. However, it is widely accepted that for 
magnetic fields with strengths higher than about 1 T, one can use the strong magnetic 
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field approximation, as the energy-level Zeeman splitting is much larger than the fine 
structure level splitting. Therefore, in the following, we use the strong magnetic field 
approximation in the computation of the perturbed energies of the hydrogen isotopes 
and Zeeman–Doppler broadening when calculating theoretical or synthetic H/D Bal-
mer-α line profiles under different conditions, i.e., population fractions and isotopic ra-
tions, mainly. As the energy levels involved in the Balmer Hα/Dα lines have low princi-
pal quantum numbers and the electron densities we deal with in tokamaks are relatively 
low, we will simply ignore the Stark broadening, which is due to the electric micro-field 
created by the plasma-charged particles. Another crucial point is that the presence of an 
external magnetic field introduces anisotropy for the emitted photons. In fact, the isot-
ropy of spontaneously emitted photons is no longer valid when considering spectral 
profiles of lines emitted in tokamaks, especially the divertor region. The shape of the 
Hα/Dα line depends strongly on the angle θ between the direction of the magnetic field 
and the observation direction, i.e., the line-of-sight. It is interesting to consider spectra at 
two specific values of the angle θ: 0 (or 180°) and 90°, which correspond respectively to 
parallel and perpendicular observations. The shape of the line profile for any other angle 
θ in the range ቃ0: గଶቂ ∪ ቃగଶ : 𝜋ቂ is somehow between the parallel and perpendicular pro-
files. For illustration, we show in Figure 1 the normalized profiles of the Hα/Dα lines 
calculated for a magnetic field of 2 T by considering only one neutral population having a 
Maxwellian VDF with a temperature of 2 eV. A gas mixture composed of 10% of hydro-
gen and 90% of deuterium was assumed for this illustrative calculation. We have used 
the strong magnetic field approximation for the Zeeman effect for this relatively high 
magnetic field strength. In addition, as the electron density 𝑛௘ is typically of the order of 10ଵସ cm-3 in tokamak divertors, we have neglected the Stark line, broadening in our 
calculations. In Figure 1a, the line profiles were calculated for a perpendicular observa-
tion (θ = 90°) with respect to the magnetic field direction. One can see that for each hy-
drogen isotope, the total line profile represented by the red solid line is a sum of a central 𝜋 component (represented by the blue solid line) located respectively at 𝜆஽ഀ = 6561.04 
Å for Dα and 𝜆ுഀ = 6562.8 Å for Hα lines and two lateral 𝜎ା  and 𝜎ି  components 
(black solid line). The 𝜎ା and 𝜎ି components are equally spaced from the central 𝜋 
component and their intensities are half of that of the 𝜋 component. In Figure 1b, the 
shown profiles were calculated for a parallel observation with respect to the magnetic 
field direction, i.e., for an angle 𝜃 = 0° or 180°. In this case, the line profile of each hy-
drogen isotope consists onto the two lateral components 𝜎ା and 𝜎ିand line dips are 
visible at the unperturbed wavelengths of the Balmer-α lines, i.e., at 𝜆஽ഀ = 6561.04 Å 
and 𝜆ுഀ = 6562.8 Å. To be a bit more comprehensive, we show in Figure 2 the synthetic 
Hα/Dα line profile calculated for a parallel observation by considering the same condi-
tions as in Figure 1 but assuming a neutral population having a Maxwellian VDF with a 
neutral temperature of 20 eV. Note that each 𝜎 component is Doppler-broadened with a 
full width at half maximum FWHM more than three times (more precisely a factor of √10) than that of the previous case of Figure 1. For this temperature of 20 eV, the FWHM 
(~0.92 Å for Dα; ~0.65 Å for Hα) is greater than the 𝜋 − 𝜎 separation (~0.4 Å for both 
Dα and Hα). This explains why one observes single broad peaks centered at the unper-
turbed line wavelengths 6561.04 Å and 6562.8 Å. Note also that the 𝜋 − 𝜎 separation 
increases linearly with the strength of the magnetic field (~0.2 Å/T for each component 𝜎ା and 𝜎ି). To close this section, we present in Figure 3 a more realistic calculation 
corresponding to the combination of Figures 1b and 2, but assuming the emission results 
from two neutral populations: a cold neutral population and a warm neutral one, both 
having a Maxwellian VDF but with different temperatures: 2 eV and 20 eV respectively. 
For this illustration, it was assumed that the cold population represents 75% while the 
warm population represents only 25%. This is true for hydrogen neutrals as well as 
deuterium neutrals. It should be noted here that because deuterium neutrals have a mass 
twice that of the hydrogen neutrals, the FWHM of the Hα line is greater by a factor of √2 
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than the FWHM of the Dα line. This is why the 𝜎ା/𝜎ି peaks of the Dα line are well 
separated in comparison with those of the Hα line. 

 
(a) 

 
(b) 

Figure 1. Zeeman–Doppler profiles of the Balmer-α lines (Hα/Dα) computed for a gas mixture 
composed of 10% of hydrogen and 90% of deuterium with a temperature of 2 eV in the presence of 
a magnetic field of 2 T. (a) Perpendicular observation (𝜃 = 90°): for each hydrogen isotope, the total 
line profile (red solid line) is a sum of a central 𝜋 component (blue solid line) located respectively 
at 𝜆஽ഀ = 6561.04 Å for Dα and 𝜆ுഀ = 6562.8 Å for Hα lines and two lateral 𝜎ା and 𝜎ି compo-
nents (black solid line). (b) Parallel observation: the spectrum was calculated for a parallel obser-
vation with respect to the magnetic field direction, i.e., for an angle 𝜃 = 0° or 180°. 
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Figure 2. Same as Figure 1b (synthetic Hα/Dα line profile), being computed for a parallel observa-
tion with respect to the magnetic field, but for a neutral population having a Maxwellian VDF with 
a temperature of 20 eV instead of 2 eV. 

 
Figure 3. A synthetic Dα/Hα line profile calculated for a parallel observation with respect to the 
magnetic field direction whose intensity is 2 T. A 90%D + 10%H gas mixture was assumed for this 
calculation. The Balmer-α line emission profile (red solid line) is assumed resulting from the com-
bination of two neutral populations having Maxwellian VDFs with temperatures of 2 eV (blue 
dashed line) and 20 eV (black dotted line). The relative fractions or concentrations of each popula-
tion are as follows: 75% of cold neutrals and 25% of warm neutrals for each hydrogen isotope. 

The method termed here as the classical method is based on the fit of the experi-
mental Hα/Dα line spectra by modeling their theoretical profiles as explained previously 
in this section. In the following, to illustrate this physical model, we consider a synthetic 
profile instead of an experimental spectrum. The advantage of using a synthetic line 
profile is that there is no instrumental function to account for and as all the parameters 
are known, it is easy to assess the optimization technique allowing to fit the synthetic line 
profile. An example is illustrated in Figure 4. Synthetic data (synthetic spectrum calcu-
lated with known parameters) are given as input to a lest-square minimization Python 
algorithm to be fitted, giving only the variation domains of the parameters (tempera-
tures, fractions, isotopic ratio, magnetic field strength). As it can be seen, there is a very 
good agreement between the synthetic spectrum (full blue circles) and the fitted profile 
(red solid line). To demonstrate the robustness of this fitting algorithm on such synthetic 
spectra, we compared the parameters of the best fit to the known ones, i.e., the ones used 
to compute the synthetic Hα/Dα line spectrum. The known and deduced parameters are 



Appl. Sci. 2022, 12, 9891 8 of 14 
 

compared in Table 1. As it can be seen from Table 1, the inferred parameters are very 
close to the real ones, i.e., known ones. Of course, when it comes to the fit of real exper-
imental spectra, things are more complex and other considerations should be taken into 
account. In particular, experimental line spectra contain a background, are generally 
noisy and lines are also subject to an additional broadening due to the instrumental 
function of the measurement system. However, in most situations, the instrumental 
function is Gaussian and therefore the spectra can be deconvoluted prior to their fitting, 
or an instrumental broadening should be considered in the fitting procedure. Fitting ex-
perimental Hα/Dα spectra from tokamak divertors is a widely used technique. In the last 
case, the obtained temperatures are “apparent temperatures”. The real temperatures are 
then obtained from the apparent ones by subtracting a temperature value corresponding 
to the Gaussian broadening due to the instrumental function. In the next sections, instead 
of fitting such spectra, we propose to use only some spectroscopic features in an artificial 
intelligence algorithm to determine, in a fast way, the isotopic ratios for H–D mixtures in 
order to extrapolate them to D–T mixtures, make fast calculations for real-time opera-
tional control and make predictions for larger devices such as ITER and future fusion 
reactors. 

 
Figure 4. An example of the fitting of a synthetic Dα/Hα line profile calculated for a parallel observation 
with respect to the magnetic field direction. A least-square minimization Python algorithm was used to 
infer various parameters. The known and deduced parameters are summarized in Table 1. 

Table 1. Comparison of the best fit parameters of the Python least-square minimization (fitting) 
algorithm with the real parameters (known parameters) of the synthetic line spectrum. 𝑇େ and 𝑇୛ 
stand for the temperatures of the cold and warm neutral populations, respectively. 𝑓େ and 𝑓୛ 
stand for their relative fractions in percentages. 

Parameters Known Values Inferred Values Errors (𝑇C, 𝑓C) 2 eV; 55% 2.015 eV; 54.998% 0.744%; 0.0042% (𝑇W, 𝑓W) 15 eV; 45% 15.111 eV; 45.002% 0.742%; 0.0051% 
B 2 T 2.091 T 4.56% 𝑛H𝑛H + 𝑛D

 5% 5.0007% 0.01308% 𝑛D𝑛H + 𝑛D
 95% 94.9993% 0.00068% 

3. Some notions on Machine Learning and Deep Learning 
In this section, we introduce, briefly, some basics of machine learning. Machine 

learning consists of the use of algorithms for classification, clustering, anomaly detection 
and regression issues. Classification consists of the identification of the category an object 
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belongs to. Clustering consists of the automatic grouping of similar objects into sets. Al-
gorithms of anomaly detection search to identify rare characteristics of a data sample 
element with respect to the majority of the data. Regression consists of predicting nu-
merical values as a continuous function for an attribute associated with an object. There 
exist several algorithms such as random forest, nearest-neighbors or SVM (Support 
Vector Machines) for classification, or SVR (Support Vector Regression), near-
est-neighbors and random forest for regression. For plasma physics applications, we use 
the regression feature of machine learning as we are interested by the prediction of 
physical quantities. For the results presented here, we have used the open-access ma-
chine-learning platform called TensorFlow [24] which is based on neural networks. We 
have precisely used the Python deep-learning API (Application Programming Interface) 
called Keras (see Keras website [25]). The regression algorithm which we have used is 
based on the ADAM optimizer (see Keras optimizers [26]). Note that there exist other 
machine learning platforms such as the open-access, Python-based Sickit-learn platform 
[27].  

4. Application of Machine Learning to Spectroscopic Features of Hα/Dα Line Profiles 
Machine learning algorithms require features and target data. For our application, 

we have used six input features. These are the strength 𝐵 of the magnetic field 𝐵ሬ⃗ , the 
temperatures 𝑇C  and 𝑇W  of the cold and warm neutral populations, the difference Δ𝜆ுೌିఙష(஽) = 𝜆ுഀ − 𝜆ఙష(஽) between the non-perturbed wavelength 𝜆ுഀ  of the Hα line 
and the blue-shifted 𝜎ି(𝐷) component of the Dα line, the ratio of the intensity of the Dα 
dip (or unshifted Dα wavelength 𝜆஽ഀ) to that of its 𝜎ି(𝐷) component, i.e., 

ூీ౟౦(஽)୍഑ష(஽)  and 

the ratio, 
ூ഑శ(ಹ)୍഑ష(஽) of the intensity of the 𝜎ା(𝐻) component of the Hα line to of the 𝜎ି(𝐷) 

component of the Dα line. The last three features are illustrated in Figure 5. The target 
data is the fraction of hydrogen neutrals or the isotopic ratio H/H+D. More precisely, we 
used a preprocessing program which computes many synthetic profiles by varying the 
magnetic field strength and the temperatures and relative fractions of both cold and 
warm H and D neutrals for a mixture of H and D with up to 25% of hydrogen. For the 
results presented here, we have used the typical following parameters: B in the range 1–5 
T, cold and warm temperatures with the following respective values 𝑇C = 2 ± 0.2 eV and 𝑇W = 20 ± 2 eV, cold neutral fraction in the range 20–80% and a hydrogen concentration 
(isotopic ratio) in the range 1–25%. After calculating the line profiles, the preprocessing 
program extracts for each calculated profile the features described previously and 
transmits them to the regression algorithm. The whole process is illustrated in Figure 6. 

The aim of the regression algorithm used here was to predict the isotopic ratio in a 
mixture of (100 − x)%D − x%H where x varies between 1% and 25% by training it using 
the features mentioned above, in particular, the wavelength separation and the line in-
tensity ratios, with the number of calculated spectra representing the number of samples. 
A set of 200,000 theoretical spectra were generated for the training phase of the process. 
Concerning the Neural network regression algorithm itself, it should be noted that in 
addition to the input and output neuron layers, our neural network is composed of six 
intermediate or hidden layers having respectively 150, 200, 400, 400, 200 and 100 neurons. 
The number of nodes or neurons of the input layer is equal to the number of input fea-
tures, i.e., six in our case. The output layer contains a single node or neuron, as the target 
is a single numerical quantity (the isotopic ratio). 
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Figure 5. A scheme of a two-temperature Zeeman–Doppler Hα/Dα line profile indicating the 
spectroscopic characteristics which are part of the features data for the regression algorithm: the 
wavelength separation Δ𝜆ுೌିఙష(஽)  between the non-perturbed Hα wavelength 𝜆ுഀ = 6562.8 Å 
and the blue-shifted (left component) 𝜎ି component of the Dα line, the ratio of the intensity of the 
Dα dip to the intensity of its 𝜎ି component, i.e., ூీ౟౦(஽)ூ഑ష(஽) , and the ratio of the intensity of the 𝜎ା 
component of the Hα line to of the 𝜎ି component of the Dα line. 

 
Figure 6. A scheme illustrating the whole method of the hydrogen isotopic ratio determination 
from the generation of theoretical Hα/Dα line profiles to the prediction of H/H+D ratios by deep 
learning (Neural Network algorithm). Numbers 1 to 6 inside the squares refer to the six input fea-
tures. 

5. Results and Discussion 
To illustrate the results of the application of the regression algorithm which we have 

adopted from the TensorFlow ML platform to our synthetized Hα/Dα line spectra, we 
show in Figure 7 the isotopic ratio (in percentages) as predicted by the ML algorithm 
versus the real isotopic ratio as used in the preprocessing code to generate the Hα/Dα 
line profiles. The loss function of the DL algorithm for our application is shown on Figure 
8 as a function of the number of iterations or epochs. To obtain results corresponding to 
more realistic situations, we have added Gaussian noise to the synthetized Hα/Dα line 
profiles. The deep learning algorithm values are scattered around the black solid line 
representing the 𝑦 = 𝑥 function. We found a mean error of 7.6% and a median error of 
2.4% with respect to the expected values of the hydrogen isotopic ratio, H/H+D. Note that 
adding noise to the profiles makes the determination of the position of the peak of the Hα 
line difficult, and hence introduces an error in the ML feature wavelength separation. The 
consequence of this is that the regression algorithm introduces in turn an uncertainty on 
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the isotopic ratios as can be seen on Figure 7. If one excludes outlier data, it can be rea-
sonably considered that there is an overall good agreement between the predicted values 
of the isotopic ratio and the real values called true values in Figure 7. It is worth noting 
that the reasons of such relatively high error values are not due to the ML regression al-
gorithm but are due to the difficulty of the preprocessing program in the determination 
of some features especially when the spectrum minima cannot be defined accurately. As 
this point sets limitations to the use of the regression algorithm and affects the accuracy 
of the predictions, it will be tackled in the near future to improve the proposed technique. 

 
Figure 7. The predicted isotopic ratio as a function of the real (theoretical isotopic ratio) and the 
training set; a sample of 200,000 data points were used (200,000 theoretical line profiles were gen-
erated). 

 
Figure 8. The loss function for the training data used for the determination of the hydrogen isotopic 
ratio. The less the loss is the better is the regression. 

Now, concerning the validation of the method, we have generated a total of 20,000 
other theoretical spectra in a similar mater as for the generation of the training set. The 
results of the DL algorithm are shown on Figure 9, as the predicted values of the hydro-
gen isotopic ratio are plotted as a function of the true values. For the test phase, the mean 
square error was estimated to be 7.9% while the median error value is 2.6%. One can see 
from the figure some outlier points for which the predicted values are far from the 
known values, but for the majority of the data, the predicted values match well the 
known values. 
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Figure 9. The predicted isotopic ratio as a function of the real (theoretical isotopic ratio) for the test 
set where a sample of 20,000 data points were used (20,000 theoretical line profiles). 

The results presented here demonstrate that one can use simple spectral features of 
line spectra such as wavelength separation and dip-to-peak or peak-to-peak intensity ra-
tios instead of fitting whole spectra to determine and predict isotopic ratios in H–D 
mixtures for conditions of divertor plasmas. We have limited our study to deuterium–
hydrogen mixtures with hydrogen concentrations lying in the range 1–25%, but the re-
sults can be easily verified for the opposite situation where deuterium represents up to 
25%, and also mixtures where hydrogen represents up to 50%. It should be noted that our 
results aimed to demonstrate the proof-of-principle of the use of ML coupled to spec-
troscopy to determine the isotopic ratio in H–D mixtures met in divertor plasmas of 
magnetic fusion devices such as tokamaks. The next step will be the application of the 
method to experimental data from current tokamaks such as JET and ASDEX-Upgrade. 
In this step, we will limit ourselves to spectra measured in a direction parallel or qua-
si-parallel to the magnetic field direction; spectra measured perpendicularly to the 
magnetic field do not present separate 𝜎ା/𝜎ି components because of the presence of the 
adjacent 𝜋 component of both Hα and Dα lines. Furthermore, the addition of the plasma 
pressure, plasma temperature and density as well as other quantities as input features for 
the ML regression algorithm may allow us to discover some hidden connections with the 
isotopic ratio; this can be easily seen in the correlations between the different features and 
the target data (isotopic ration) in this case. Another point consists in the extrapolation of 
the results to D–T mixtures, as future DEMO and fusion nuclear power plants (reactors) 
will be operated with a mixture of deuterium and tritium. Determining the isotopic ratio 
D/D+T in fast way will be an important advantage for the device operators to control the 
plasma contents to be in line with the recommendation of the safety authorities and 
manage the performances of the reactors. All these issues not tackled in this paper will be 
the subject of another paper in the near future. 

6. Conclusions 
In this paper, we have demonstrated the proof-of-principle of a new technique to 

determine the isotopic ratios of hydrogen isotopes of interest for magnetic fusion re-
search. In this technique, we combined simple spectral characteristics of the Balmer-α 
line emitted by hydrogen–deuterium gas mixtures with a deep learning regression algo-
rithm adopted from the open-access machine-learning platform TensorFlow with Keras 
as the Python API. The demonstration was based on results obtained with Hα/Dα line 
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profiles which we have computed varying a number of parameters such as the strength 
of the magnetic-filed B, the temperatures and fractions of the cold and warm populations 
of neutrals, reflecting the recycling mechanisms in tokamak divertors, and the concen-
tration of hydrogen (in the range 1–25%). These parameters were varied to represent 
typical conditions of tokamak divertors. Instead of fitting whole spectra, only three pa-
rameters of each synthetic profile were used and transmitted to the regression algorithm 
for training: a wavelength separation between the unshifted wavelength of the Hα line 
and the blue-shifted 𝜎ି of the Dα line, and dip-to-peak and peak-to-peak line intensity ra-
tios. It has been shown that when the analyzed profiles don’t contain noise, the regression 
algorithm predicts very accurately the expected isotopic ratios. However, when noise was 
introduced in the synthetized profiles, the predicted values were less accurate. The disper-
sion of the predictions around the expected values is not due to the deep learning treatment 
of the features provided to it but is attributed to the uncertainty in the determination of the 
spectral minima allowing to calculate the ML features. In other words, the error in the de-
termination of the feature concerning the wavelength separation impacts the predictions of 
the deep learning algorithm. The next step of this work will be its application to available 
experimental data from tokamaks operating with H–D mixtures, and later for D–T plasmas. 
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