Single-crystalline nanoribbon network field effect transistors from arbitrary two-dimensional materials - Aix-Marseille Université Accéder directement au contenu
Article Dans Une Revue npj 2D Materials and Applications Année : 2022

Single-crystalline nanoribbon network field effect transistors from arbitrary two-dimensional materials

Muhammad Awais Aslam
Tuan Hoang Tran
Antonio Supina
  • Fonction : Auteur
Vincent Meunier
  • Fonction : Auteur
Kenji Watanabe
Takashi Taniguchi
Marko Kralj
Christian Teichert
  • Fonction : Auteur
Evgeniya Sheremet
  • Fonction : Auteur
Raul Rodriguez
  • Fonction : Auteur
Aleksandar Matković

Résumé

Abstract The last decade has seen a flurry of studies related to graphene nanoribbons owing to their potential applications in the quantum realm. However, little experimental work has been reported towards nanoribbons of other 2D materials. Here, we propose a universal approach to synthesize high-quality networks of nanoribbons from arbitrary 2D materials while maintaining high crystallinity, narrow size distribution, and straightforward device integrability. The wide applicability of this technique is demonstrated by fabricating molybednum disulphide, tungsten disulphide, tungsten diselenide, and graphene nanoribbon field effect transistors that inherently do not suffer from interconnection resistance. By relying on self-aligning organic nanostructures as masks, we demonstrate the possibility of controlling the predominant crystallographic direction of the nanoribbon’s edges. Electrical characterization shows record mobilities and very high ON currents despite extreme width scaling. Lastly, we explore decoration of nanoribbon edges with plasmonic particles paving the way for nanoribbon-based opto-electronic devices.

Domaines

Matériaux

Dates et versions

hal-03868502 , version 1 (23-11-2022)

Identifiants

Citer

Muhammad Awais Aslam, Tuan Hoang Tran, Antonio Supina, Olivier Siri, Vincent Meunier, et al.. Single-crystalline nanoribbon network field effect transistors from arbitrary two-dimensional materials. npj 2D Materials and Applications, 2022, 6 (1), pp.76. ⟨10.1038/s41699-022-00356-y⟩. ⟨hal-03868502⟩

Collections

UNIV-AMU
13 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More