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Abstract

This paper examines the question of non-anonymous Growth In-
cidence Curves (na-GIC) from a Bayesian inferential point of view.
Building on the notion of conditional quantiles of Barnett (1976), we
show that removing the anonymity axiom leads to a non-parametric
inference problem. From a Bayesian point of view, an approach using
Bernstein polynomials provides a simple solution and immediate con-
fidence intervals, tests and a way to compare two na-GIC. The paper
illustrates the approach to the question of academic wage formation
and tries to shed some light on wether academic recruitment leads to a
super stars phenomenon, that is a large increase of top wages, or not.
Equipped with Bayesian na-GIC’s, we show that wages at Michigan
State University experienced a top compression leading to a shrinking
of the wage scale. We finally analyse gender and ethnic questions in
order to detect if the implemented pro-active policies were efficient.
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1 Introduction

Growth incidence curves (GIC) have now a long history starting with
Ravallion and Chen (2003). The purpose was to visualise who had
benefited from growth and in particular if growth has been pro-poor
or not. The basic ingredient of a GIC consists in comparing two quan-
tile functions to explain changes in the income distribution. However,
it soon appeared that this initial tool had a limit. When compar-
ing quantiles, a GIC ignores the trajectory of individuals belonging
to these quantiles, relying on individual anonymity. Only the global
change in the income distribution was under scrutiny. If we want to
take into account social mobility for evaluating welfare, our interest
should rely in fact on a bivariate income distribution for building a
complete growth incidence curve, instead of considering two indepen-
dent quantile functions associated to two marginal income distribu-
tions.

The problem is however not trivial. A quantile function consists in
proposing an ordering and as noted by Barnett (1976), ordering and
quantiles are a one dimension property. There is no natural concept
of a bivariate ordering for a bivariate distribution F (x, y). Barnett
(1976) has proposed a series of four sub-ordering principles in or-
der to circumvent the problem: marginal ordering, reduced ordering,
partial ordering and conditional ordering. The economic literature
about non-anonymous GIC (see e.g. Grimm 2007, Van Kerm 2009,
Jenkins and Van Kerm 2011 or Lo-Bue and Palmisano 2020 to quote
just a few) has implicitly retained the notion of conditional ordering of
Barnett (1976). In the conditional ordering, a first dimension is cho-
sen, the one corresponding to t− 1 or the initial state. Conditionally
on that ordering, the second component (corresponding to t) is or-
dered by blocks. This approach allows to point out income dynamics.
So the literature on income dynamics considers individual transitions
between income classes (which can correspond to marginal quantile
intervals) when the non-anonymous GIC relies on a conditional quan-
tile function. Therefore, transition matrices explain the probability of
going from one group of income to another group in the next period.
The fact that these matrices are built around groups operate a kind
of smoothing because individuals within one group are supposed to
evolve similarly. In contrast, the conditional quantile function follows
the trajectory of each individual, and two individuals coming from the
same initial quantile group do not have necessarily the same trajec-
tory. So the graph of a conditional quantile function needs smoothing
to become intelligible. Consequently, as we shall see later on, the esti-
mation of a na-GIC becomes fundamentally a non-parametric econo-
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metric problem.
The aim of the present paper is threefold. First, we want to char-

acterise the na-GIC as a growth rate computed between a marginal
quantile function defined at t − 1 and a conditional quantile func-
tion at t. Second, we propose inference for na-GIC using a Bayesian
semi-parametric framework. Finally, we examine an empirical ques-
tion concerning academic wage formation using the tool of na-GIC in
order to take fully into account wage dynamics and examine gender
and ethnic questions.

The paper is organised as follows. In section 2, we review a part of
the existing literature on the non-anonymous growth incidence curve.
We then show that this particular curve can be seen as a non-parametric
problem. In section 3, we show how Bernstein polynomials could be
a convenient tool for deriving the shape of this curve. We propose
a method to select the optimal degree of the polynomial. We finally
propose Bayesian inference for this problem. In section 4, we illustrate
the method by analysing wage dynamics at Michigan State Univer-
sity. Gender and ethnic questions are examined in section 5. Section
6 concludes.

2 GIC and Non-anonymous GIC

We first review the definition of a GIC, before exploring how the liter-
ature has developed the notion of na-GIC. We finally explain why the
na-GIC results in a non-parametric estimation problem.

2.1 Anonymous GIC

The aim of the Growth Incidence curve of Ravallion and Chen (2003)
was to measure the distributive impact of growth, and more specifi-
cally if growth was pro-poor or not. Their answer is provided by the
inspection of the growth rate of each quantile of two marginal income
distributions. Let Ft−1(x) and Ft(y) represent these two marginal
income distributions, a quantile function can be inferred from each
distribution separately so that the GIC can be approximated by:

gt(p) � logF−1
t (p)− log F−1

t−1(p) = log y(p)− log x(p), (1)

where x(p) and y(p) are the respective quantile functions or the deriva-
tive of the respective generalised Lorenz curves. There is no need to
have the same individuals or households in x and y. From a statistical
point of view, two cross-section samples are sufficient. This measure
simply provides an indication on how growth has impacted the shape
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of the income distribution. It is based on an anonymity axiom, which
means that this measure is independent of the initial ranking of the in-
dividuals. Using that framework, a vast literature compares and ranks
two income distributions. In particular, there is a correspondence be-
tween the shape of a GIC and stochastic dominance at the order one.
Duclos (2009) and Araar et al. (2009) have shown how to build clas-
sical stochastic dominance tests from a GIC and also how to test for
pro-poor growth when lower quantiles increase more than average.

All these questions have been investigated from a Bayesian view-
point in Fourrier-Nicolai and Lubrano (2021). Essentially the question
was to find a parametric representation for a quantile function. A first
solution consists in modelling the underlying income distribution using
simple densities for which the quantile function has a closed analyti-
cal form. If we assume, for example, that the income distribution at
each of the two periods can be modelled by a log-normal distribution,
we have a direct analytical form for the quantile function and conse-
quently for the GIC. However, in this case the shape of the GIC is very
much constrained as its slope depends solely on the difference between
inequality in the first and in the second period. Flexibility can be
reached provided the income distribution is modelled according to a
mixture model for the underlying income distribution. However, in this
case, the quantile function is semi-explicit and has to be evaluated nu-
merically. Another way consists in adjusting directly a functional form
for the Lorenz curve and deriving its first-order derivative to find the
corresponding quantile function. Fourrier-Nicolai and Lubrano (2021)
finds particularly suitable the Kakwani (1980)’s functional form based
on the Beta distribution to fit a GIC.

There are however relevant reasons for removing the anonymity
axiom. The statistician or the social planner may care about the
dynamics of income. To reach that goal, we should no longer con-
sider the marginal distributions F (x) and F (y), but the entire joint
distribution of incomes in t − 1 and t, that is F (x, y). This is the
starting point of all the literature on non-anonymous GIC (na-GIC),
as well as that of income or poverty dynamics. However removing
the anonymity axiom entails much more complex problems, especially
if we want to adopt a parametric Bayesian approach. The solutions
explored in Fourrier-Nicolai and Lubrano (2021) for the simple GIC
cannot be easily generalised. For instance Bayesian inference for mix-
tures of bivariate log-normal distributions is not an easy task. So a
new approach has to be found and this is one of the objectives of the
present paper.

4



2.2 Non-anonymous GIC

The term and concept of na-GIC has been formally introduced in the
literature by Grimm (2007). Let us start from the income quantile
x(p) and call px the order corresponding to this quantile function, in
fact the increasing rank of the observations so that x(px) are the order
statistics. We assume that in the next period we observe the same
individuals. The quantile function of the second period corresponds to
y(p). The na-GIC defined in Grimm (2007) corresponds to:

g(px) = log y(px)− log x(px). (2)

It corresponds thus to considering a quantile function computed from
the initial income distribution F (x) which is compared to a conditional
quantile function extracted from F (y|X = x(px)). So the initial order
is given by F (x) and maintained over the second period. This is a
conditional ordering in the sense of Barnett (1976). Following the
approach of Ravallion and Chen (2003), Grimm (2007) computes the
rate of pro-poor growth as:

1

q

∫ q

0
gt(px)dpx, (3)

where q is the poverty head-count for a poverty line z and the income
distribution F (x). This measures the variation over time of the Watts
poverty index for those who were poor during the first period.

Van Kerm (2009) goes further (but without using the term na-GIC)
as he relates what he calls an income mobility profile (in fact a na-GIC)
to the income mobility literature, saying that “An income mobility
profile is a graphical tool to portray income mobility and identify the
association between individual movements and initial status”. Starting
from the bivariate income distribution F (x, y), he defines a distance
function δ(x, y) that measures the income growth for an individual
between t− 1 and t. A mobility index is then defined as:

M =

∫ ∞

0

∫ ∞

0
δ(x, y)dF (x, y).

Because we are not interested in mobility for itself, but only in a certain
type of mobility, for instance upward mobility or progressive mobility
(see e.g. Benabou and Ok 2001), the distance function δ(x, y) has to
be directional as detailed in Jenkins and Van Kerm (2011), verifying
the following properties:

δ(x, x) = 0, δ(x, y) = −δ(y, x), δ(x, ρx) > 0 for ρ > 1.
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Scale or translation invariance can also be added. Possible choices for
the distance function are δ(x, y) = log y−log x for proportional income
growth and δ(x, y) = y − x for absolute income growth.

Let us decompose the joint distribution F (x, y) into the product of
marginal and conditional distributions:

F (x, y) = FY |x(y)FX (x),

so that the previous mobility index becomes:

M =

∫ ∫
δ(x, y)dFY |x(y)dFX(x) (4)

=

∫
m(X,Y )|X = x)dFX(x) (5)

=

∫ 1

0
m(X,Y |X = x(p))dp, (6)

where p = FX(x) is the rank of income x at period t − 1 and x(p)
the corresponding quantile function. The mobility profile, or in other
terms the na-GIC, is:

m(p) = m(X,Y |X = x(px)) = δ(x(px), y(px)), (7)

when seen as a function of px. The simple GIC would cor-
respond to the distance function δ(x(px), y(py)) as indicated in
Jenkins and Van Kerm (2011).

Dominance conditions to compare two growth situations
were developed with different results in Bourguignon (2011),
Jenkins and Van Kerm (2011) and Palmisano and Peragine (2015).
Starting with a S-Gini, Jenkins and Van Kerm (2006) decompose in-
equality changes between progressivity and re-ranking components.
All these papers have considered the economic status in the first pe-
riod px as the reference. Lo-Bue and Palmisano (2020) adopt another
point of view and consider complete poverty trajectories and their as-
sociated dominance conditions, independently of the initial status.

2.3 Non-anonymous GIC as a non-parametric

problem

The natural estimator for the quantile function x(p) is quite simple.
It is based on the definition of order statistics. This is the simple
empirical quantile function corresponding to:

x(p = i/n) = (x[1], · · · , x[i], · · · , x[n]), (8)
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where x[i] are the order statistics coming from the n ordered observa-
tions. This natural estimator leads to a pretty smooth aspect when
we plot it against p. There is no imperious need for smoothing even if
Yang (1985) has proposed a kernel estimate for the quantile function
which is equivalent to a Nadaraya-Watson non-parameter regression
of the order statistics x[i] over i/n.

The na-GIC in (2) is based on the difference between the log of a
conditional quantile and the log of a marginal quantile. What would
be a natural estimator for a conditional quantile? By analogy with
the natural estimator of the marginal quantile x(p = i/n), a natural
estimator for the conditional quantile of y|x is obtained by first defining
the order of x that we call (i[1], i[2], . . . , i[n]) so that x[j] = xi[j] . This
is equivalent to ordering the bivariate variable (x, y) according to x.
The natural estimator for a conditional quantile is then given by:

y(p = i[j]/n) = (yi[1] , yi[2] , . . . , yi[n]
). (9)

But this natural estimator provides a very shaky function of p, so
that a generalisation of the non-parametric estimator of Yang (1985)
proposed for usual quantile function becomes very useful in this case.
Let us detail an example, using simulated data.

Example 1 We have generated 500 observations from a bivariate log-
normal with a negative correlation, obtained using the following pa-
rameters:

μ = (1.0, 1.2), Σ =

(
0.35 −0.12
−0.12 0.10

)
,

leading to an empirical negative correlation of -0.55, a growth rate of
15% and Gini coefficients of respectively 0.31 and 0.18 for the two
periods. This simulation could correspond to what has happened in
China during the fifties with the great equalisation experience. Fig-
ure 1 presents the two marginal quantile functions, together with the
conditional quantile function. The estimator of Yang (1985) has prob-
lems for extreme marginal quantiles as it is based on a symmetric ker-
nel. But it manages to provide a clear interpretation of the conditional
quantile function which is otherwise too shaky.

The na-GIC (2) of Grimm (2007) consider the difference between
two quantile functions and thus could justify the smoothing of these
two quantile functions separately, or even just the smoothing of the
conditional quantile function. The mobility profile (7) of Van Kerm
(2009) on the contrary does not proceed by considering the difference of
two smoothed quantiles, but by defining the desired function as a con-
ditional expectation in itself, starting directly from the δ(·) function.

7



0.0 0.2 0.4 0.6 0.8 1.0

5
10

15

p

x 
an

d 
y

Marginal quantiles
Smooth marginals
Conditional quantile
Smooth conditional

The data have been simulated from a bivariate lognormal distribution
with 500 observations. The window size for smoothing has been deter-
mined by Silverman’s rule.

Figure 1: Marginal and conditional quantiles estimated for a simulated bi-
variate lognormal distribution

More precisely, the problem is defined as a regression of δ(x(px), y(px))
over px. Because the conditional expectation is a non-linear function
of p for which a parametric form is not evident, a non-parametric
approach is needed. Van Kerm (2006) has proposed to use the lo-
cal weighted regression of Cleveland (1979) to regress δ(x(px), y(px))
over px, a method also used in Jenkins and Van Kerm (2011). The
method is available in R with the function loess, implying the choice
of a degree of smoothing. It has better properties at boundaries than
the Nadaraya-Watson kernel regression. We illustrate the difference
between (2) and (7) in the next example.

Example 2 Using the same simulated data as in the previous exam-
ple, Figure 2 shows that the differences between (2) and (7) depends
solely on what we smooth. For (2) we have smoothed only the con-
ditional quantile function, so there are more details in the extreme
quantiles. But otherwise, there are no significant differences between
the two approaches.
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Figure 2: GIC and na-GIC with np smoothing

3 A Bayesian approach using Bernstein

polynomials

We are looking for a Bayesian way of performing the single non-
parametric regression implied by (7) which takes into account the fact
that our explanatory variable is restricted to the range [0,1] and check
if a Bayesian approach could make better justice to the extreme quan-
tiles. Bayesian regression using Bernstein polynomials is a nice solution
as it fulfill both requirements. The literature on Bernstein Bayesian
regressions is not abundant and mainly devoted to cases where prior
restrictions are imposed on the shape of the Bernstein function.

3.1 Bernstein polynomials

Bernstein polynomials have been popular among engineers for approx-
imating a function f(x) for x ∈ [0, 1]. The approximation g(x, k) of
f(x) is given by:

g(x, k) =

k∑
j=0

f(j/k)Cj
kx

j(1− x)k−j =

k∑
j=0

f(j/k)bk(x, j), (10)

where Cj
k is the binomial coefficient and bk(x, j) = Cj

kx
j(1− x)k−j . If

x is outside the segment [0, 1], it can be transformed so as to lie in
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the required interval.1 The approximation can be made as precise as
desired by increasing the order k of the polynomial. It was used to
prove the Weierstrass approximation theorem.

3.2 Smoothing using Bernstein polynomials

Stadtmuller (1986), Tenbusch (1997) were the first to propose Bern-
stein polynomials for curve estimation in a problem where the obser-
vations are n couples (yi, xi):

yi = m(xi) + εi, εi ∼ N(0, σ2).

The approximation of the unknown function m(xi) is given by:

yi =
k∑

j=0

βjC
j
kx

j
i (1− xi)

k−j + εi =
k∑

j=0

βjbk(x, j) + εi. (11)

For a given basis Z = [bk(x, 0), · · · , bk(x, k)] with k + 1 columns and
n rows, the Bernstein coefficients f(j/k) can be estimated by the fol-
lowing linear regression model without an intercept:

yi = ziβ + εi.

The degree k of the polynomial is directly related to the degree of
smoothing introducing a common bias-variance tradeoff. A higher k
will reduce the bias at the cost of increasing the number of parameters.
The elements of the basis have the following form as displayed in Figure
3. They behave like a variable asymmetric kernel, with different shapes
depending on the value of the explanatory variable p.

3.3 Properties

Bernstein polynomials have a certain number of advantages for non-
parametric regression. Brown and Chen (1999) underline that the
competing method of kernel regression has problems at the bound-
aries of the sample. Solving this problem would mean considering
different kernels inside the same regression problem. This is automat-
ically done when using Bernstein polynomials as can be guessed from
Figure 3. This property is particularly interesting since we are gen-
erally concerned by the very poor and very rich in inequality studies.
Moreover our explanatory variable is naturally in the segment [0,1],
with no transformation needed.

1If x is at values on the segment [a, b], then y = (x− a)/(b− a) is at value on [0,1].
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Figure 3: Bernstein polynomial of degree k = 5

One competing method would be splines. There is a huge literature
about how to build splines which are interpolation methods (linear,
cubic, etc,...) defined around knots. There is no precise method for
choosing the knots. Usually one starts from a great number of knots
around the quantiles of the explanatory variable and then selects the
significant knots by a variable selection method which can be quite
tedious. With Bernstein polynomials, there is only one value for k to
be chosen, so the situation is in a way more simple and can rely on an
usual information criteria.

Several authors (Curtis and Ghosh 2009, Wang and Ghosh 2012,
Kim et al. 2019 to quote a few) have considered inference with con-
straints on the parameters so as to impose monotonicity or convexity.
These conditions are derived by inspecting the first or second deriva-
tive and then imposing adequate sign constraints. The first order
derivative of g(x) with respect to p is:

g′(x) = k
k−1∑
j=0

(βj+1 − βj)C
j
k−1x

j(1− x)k−j−1. (12)

The sign of each of the k elements of the sum depends only on the sign
of βj+1 − βj so that the monotonicity is obtained for:

Increasing βj ≤ βj+1, ∀j = 0, · · · , k − 1
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Decreasing βj ≥ βj+1, ∀j = 0, · · · , k − 1

An over-parameterised regression model can lead to ambiguity about
the general shape of a na-GIC as seen in the next example.

Example 3 For smoothing the na-GIC obtained from the previous ex-
ample, we used a Bernstein regression with k = 5, a value selected by
application of a BIC. The graph of the first order derivative as reported
in the right panel of Figure 4 indicates that for k = 5 the derivative
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Figure 4: Impact of smoothing and under-smoothing on a Bernstein regres-
sion
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curve is always negative, implying a strict negative slope for the na-
GIC. However, with k = 20 which implies a large over-parametrisation,
the derivative can be positive on some parts of the segment [0,1]. This
illustrates the danger of over-fitting.

3.4 Bayesian inference

Under normality of the error term, the likelihood function is:

l(y|θ, k) ∝ (σ2)−n/2|Z(k)′Z(k)|−1/2 exp− 1

2σ2
(y−Z(k)β)′(y−Z(k)β).

In this notation, Z(k) is the Bernstein basis and its size depends on the
parameter k, which explains the presence of the factor |Z(k)′Z(k)|−1/2.
When the analysis is conducted conditionally on k, this factor can be
neglected.

Because they were concerned with specific problems,
Curtis and Ghosh (2009) (a shape restricted Bernstein regres-
sion) and Kim et al. (2019) (sample selection) made use of particular
prior distributions. Our case is much simpler. We have two param-
eters, β and σ2 while k is part of the model specification. Because
we are not interested in specifying a priori a particular restriction
on the shape of the Bernstein polynomials, we can consider a usual
non-informative prior with:

ϕ(β) ∝ 1, ϕ(σ2) ∝ 1

σ2
. (13)

Following standard textbook results (see e.g. Bauwens et al. 1999,
pages 56-64), the posterior density of σ2 and β are respectively an
inverted gamma2 and a Student:

ϕ(σ2|y) = fIG(σ
2|s∗, ν∗), ϕ(β|y) = ft(β|β∗,M∗, s∗, ν∗),

where the hyper-parameters are given by:

M∗ = Z(k)′Z(k), (14)

β∗ = M−1
∗ Z(k)′y, (15)

s∗ = y′y − y′Z(k)M−1
∗ Z(k)′y, (16)

ν∗ = n. (17)

We are interested in non-linear transformations of the parameters
in order to get the posterior density of the na-GIC. From the student
posterior density of β, we can obtain m draws, so that we can build
a m × np matrix M of posterior draws from the posterior density of
the na-GIC on a grid of np predetermined points of p. These draws
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are obtained using the transformation β
(j)
i bk(x, i), where β

(j)
i is the jth

draw of βi leading to:

M [j, .] =

k∑
i=0

β
(j)
i Ci

kp
i(1− p)k−i, (18)

where the np columns corresponds to the np values of the grid. From
this grid and this matrix, we can determine a posterior confidence
interval for the na-GIC, just by determining empirically the row quan-
tiles of M . In the same vein, we can construct a m×np matrix Ms of
the derivative of the na-GIC. Elements of this second matrix are based
on the following transformation:

Ms[j, .] = k

k−1∑
i=0

(β
(j)
i+1 − β

(j)
i )Ci

k−1p
i(1− p)k−i−1. (19)

3.5 Model specification

The choice of k can be seen as a variable selection problem like in
Curtis and Ghosh (2009) and Choi et al. (2016). They both use the
approach of Geweke (1996) while they are in a context where they
want to impose restrictions on the shape of the Bernstein polynomial.
However, even if they are confronted to the same type of restrictions,
Ding and Zhang (2016) prefer to use the usual information criteria,
i.e. the BIC, the AIC or the deviance information criteria (DIC) of
Spiegelhalter et al. (2002), in order to select the degree k of the Bern-
stein basis. These quantities are:

BIC(k) = −2 log p(y|θ̂, k) + (k + 1) log(n), (20)

AIC(k) = −2 log p(y|θ̂, k) + 2(k + 1), (21)

DIC(k) = −2Eθ[log(p(y|θ))] + pD. (22)

In this writing, p(y|θ̂, k) is the posterior density or its approximation
by the likelihood function and θ̂ is the point where maximum of the
posterior density is reached. The expectation needed for the DIC is
obtained in the same way. Finally, pD is the effective dimension of the
model as suggested in Spiegelhalter et al. (2002). Because we have no
hidden parameters, the penalty pD can be simplified to 2(k + 1).

Using an information criteria implies that the most parsimonious
model is looked for. Hence, there is a tradeoff between efficiency and
complexity of the Bernstein polynomial. The idea is to select k so that
local details will be smoothed out while not constraining too much the
general shape, as we shall see in the next example.
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Example 4 We continue using our previous simulated data. When
looking for an optimal k, the first panel in Figure 5 indicates that k = 5
is the optimal value using a BIC and 500 simulations of the posterior
density. With this specification, we draw m = 5, 000 values for β. The
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Figure 5: Bayesian inference for a Bernstein regression

next panel displays the posterior graph for the na-GIC curve together
with its 90% confidence bands for two cases, k = 5 and k = 19. From
this example, it is clear that the gain in efficiency with k = 19 does
not compensate the increasing complexity of the model.
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3.6 Testing for pro-poor growth

In a Bayesian framework, it is straightforward to test for pro-poor
growth under anonymity, or in other words to test if the income of
lower quantiles has grown more than that of the rest of the population.
We simply need to have a convenient modelling of the two quantile
functions indexed respectively by θ1 and θ2. Using m draws from the
posterior density of these parameters and build a m × np matrix of
draws from the adequate transformation of these draws:

MGIC [j, .] = log y(p|θ(j)2 )− log x(p|θ(j)1 ).

For modelling the quantile functions y(p|θ2) and x(p|θ2), we
can use the simple model of Kakwani (1980) detailed in
Fourrier-Nicolai and Lubrano (2021). For each quantile pi of matrix
MGIC , we can compute the empirical probability that g(pi) > 0 to
know which quantiles have significantly grown:

Pr g(pi) > 0 � 1

m

m∑
j=1

1(MGIC [j, i] > 0),

where 1(·) is the indicator function. To test for pro-poor growth, we
can also compute and the empirical probability that g(pi) > γt where
γt is the average growth rate over the period. In doing so, we compare
two marginal distributions using their quantile functions.

With the na-GIC, the statistical problem is quite similar once we
have obtained m draws from the parameters and stored their trans-
formation defined in (18). The interpretation is of course different
as we look at the trajectories of those who were initially poor, if
their income has grown enough so that they managed to get out of
poverty. Let us call the matrix (18) MnaGIC . The probability that
m(p) = δ(x(px), y(px)) > 0 is computed as:

Pr(m(pi) > 0) � 1

m

m∑
j=1

1(MnaGIC [j, i] > 0).

We can also compute the probability that the slope of the of the na-GIC
is negative for all pi using the matrix Ms of draws (19) corresponding
to the the first order derivative of the na-GIC curve:

Pr

(
∂m(pi)

∂pi

)
� 1

m

m∑
j=1

1(MsnaGIC [j, i] < 0).

Example 5 Using the same simulated data, Table 1, reports the em-
pirical probability that the na-GIC curve is lower than the average
growth rate γ; then the probability that it is positive for each decile;
and finally the probability that the derivative is positive.
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Table 1: Posterior probabilities for quantiles
p 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
na-GIC> γ 1.00 1.00 1.00 1.00 1.00 0.01 0.00 0.00 0.00
na-GIC> 0 1.00 1.00 1.00 1.00 1.00 0.94 0.00 0.00 0.00
Derivative> 0 0.00 0.03 0.01 0.01 0.02 0.00 0.01 0.01 0.07

4 Wage dynamics at MSU

Michigan State University (MSU) used to publish detailed pdf files
documenting the wages paid to its academic staff. It is thus pos-
sible to construct a panel of individuals together with their grade,
wage, type of contract and seniority for two years 2006 and 2012.
After those dates, the information content of the published files di-
minished, names disappeared and 2012 is the last useful available
date. The 2006 and 2012 samples have already been studied by
Benzidia and Lubrano (2020) to explore academic wage formation in
a static case. Benzidia and Lubrano (2020) were looking for a super-
star effect, which means the presence of some top academics paid at a
much higher wage than their followers. That type of effect was found
in private firms for Chief Executive Officers that led a signification
increase in wage inequality (Gabaix and Landier 2008). No super star
was detected among MSU academics, except slightly when recruiting
some Assistant Professors in some fields such as Medicine and Eco-
nomics. On the contrary, there seemed to be a phenomenon of wage
compression when climbing up the wage ladder, suggesting a glass ceil-
ing effect. We have now new Bayesian tools, the na-GIC curve which
allows to follow individual trajectories. This makes a great difference
as we can study wage dynamics, pointing our attention also to gender
and ethnic issues from this point of view.

4.1 A case study in university’s recruitment

policy

As in many American universities, MSU was tempted by an un-
bundling policy which intends to separate the traditional academic
tasks (teaching, research and service) into distinct jobs by introduc-
ing new positions like Educator, Instructor, Lecturer or Specialist
(Macfarlane 2011). These new jobs have a much lower mean wage:
$46,941 against $91,820 for regular academics (Assistant, Associate,
Full, Endowed Professors) in 2006, together with a lower dispersion.
And these people are most of the time recruited on a fixed term con-
tract. The other characteristics of the recruiting policy is the over-
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all rise of fixed term contracts. From 2006 to 2012, the number of
fixed term contracts has increased by 35% among regular academics
at MSU, while the number of individuals in the tenure system remained
stable. This increase concerned mainly Assistant professors. As a con-
sequence, the unbundling policy can increase wage inequality and even
foster polarisation.

One of the aims of this application is to investigate if this pol-
icy has managed to reallocate funds in order to be able to increase
academic wages and in particular if top wages in academia have
grown more than the average wage as in other sectors of the economy
(Gabaix and Landier 2008). The simple GIC will help us to depict
the evolution of the overall academic wage distribution and illustrat-
ing which of its parts have increased more rapidly. But the na-GIC
allows us to follow individual trajectories as it explicitly permit possi-
ble re-ranking. With a na-GIC, we can depict which type of career an
academic can expect. The second aim of this application is to inves-
tigate gender and ethnic issues and in particular what was the effect
of the unbundling policy on the growth rate of female wages, and also
if the pro-active anti-discrimination policies promoted by MSU were
effective.

4.2 Wage dynamics and mobility

The estimation of a transition matrix between 2006 and 2012 describes
the mobility of academics at MSU. Status transition can be staying in
the same position, being promoted or quitting MSU. There were 2,271
academics in 2006 and 34% of them were females. Among those aca-
demics, 687 have left in 2012. The probability for a female academic
to leave is 33%, but this rate falls down to 29% for males. Assistant
Professors are those with the highest quitting rate, due to institu-
tional reasons, while Associate, Full and Endowed Professors are by
far mostly staying in the same position with an increasing probabil-
ity, as indicated in Table 2. It is more difficult for females to be

Table 2: Mobility of academics between 2006 and 2012
Assist. Prof Assoc. Prof Full Prof Endowed Prof Quit Other

Assistant Prof 0.23 (0.25) 0.34 (0.32) 0.01 (0.00) 0.00 0.40 0.02 (0.
Associate Prof 0.00 0.48 (0.49) 0.23 (0.20) 0.01 (0.00) 0.21 (0.24) 0.06 (0.
Full Prof 0.00 0.00 0.60 (0.59) 0.03 (0.02) 0.27 (0.30) 0.09
Endowed Prof 0.00 0.00 0.04 0.56 (0.45) 0.27 (0.32) 0.13 (0.
Rows sum to one. The column Other corresponds to Emeritus or administrative tasks.
Figures for females are indicated in parentheses when they are different from those of
males.
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promoted from Assistant to Associate and from Associate to Full pro-
fessor. When having been promoted, they quit more often MSU. At
the top of the ladder, they stay a shorter time Endowed, preferring
either to quit or to take an administrative position, which is a secure
way of getting a wage increase (Hamermesh et al. 1982). There is thus
a clear gender issue for females at MSU.

Let us now estimate a Mincer equation explaining the log wage as
a function of experience and other characteristics for the two groups,
stayers and movers. The comparison between these two wage equations
is quite illuminating as presented in Table 3. The movers have a yield of

Table 3: Wage equations in 2006 for academics staying at MSU or leaving
before 2012

Stayers Movers
Estimate t value Estimate t value

(Intercept) 11.119 707.532 11.128 380.837
Exp 0.005 2.498 0.007 1.553
Exp2 -0.000 -1.338 -0.000 -2.041
Associate Prof 0.226 12.816 0.148 4.154
Full Prof 0.489 25.810 0.446 12.017
Endowed Prof 0.847 25.335 0.821 12.527
Contract 0.020 1.063 -0.175 -6.111
Female -0.064 -4.712 -0.028 -1.125
R2 0.510 0.459
σ 0.246 0.306
N 1,584 687

experience which is decreasing after 12 years while it starts decreasing
after 30 years for stayers. This makes a strong incentive to justify
staying or leaving. The second difference is in term of type of contract.
There are two types of contracts, the tenure system and the fixed term
contract system where contracts can be renewed, but not necessarily.
For the movers, the fact of holding a fixed term contract implies a wage
loss of 18% when this does not play any role for the stayers. Compared
to the Assistant Professors, Associate Professors have a gain of 15%
for the movers, but 23% for the stayers, Full Professors have a gain
of 45% for the movers, but 49% for the stayers. Finally, the Endowed
Professors have a gain of 82% for the movers, but 85% for the stayers.
These results suggest that those quitting MSU expect a better yield
of experience and a larger probability of being promoted elsewhere
allowing them to escape from fixed term contracts. The situation of
the females is slightly different from the whole lot. Those who decided
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to stay experience a wage differential of 6%, when this penalty is not
significant for the movers.

4.3 Bayesian na-GIC for academic stayers

We can observe only the wage of the stayers, so we have to limit our
analysis of wage dynamics to those staying at MSU. When comparing
the na-GIC and the GIC, we shall see that these two curves imply
quite different wage dynamics. We have to choose first the degree k
for the Bernstein polynomial. For the na-GIC, we get k = 1 with
BIC and DIC, which are not very plausible values and k = 4 with
AIC. We used m = 5, 000 draws. In Figure 6, we show the impact of
choosing different values for k. In order to have fine results, we must

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
10

0.
20

0.
30

GIC and na−GIC for Academic stayers, k = 4

p

G
ro

w
th

 ra
te

GIC
naGIC
Mean growth

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
10

0.
20

0.
30

GIC and na−GIC for Academic stayers, k = 12

p

G
ro

w
th

 ra
te

GIC
naGIC
Mean growth

Figure 6: na-GIC versus GIC and the impact of under-smoothing for aca-
demic stayers

use a rather over-parameterised model with k = 12, taking advantage
of the large number of observations (n = 1, 584). Even with k = 12,
the smoothed GIC has a very narrow 90% confidence interval. It is
roughly horizontal, but says that very top wages have increased more
than the average, while the 10% lower wages have increased much less
than γ, the average wage growth. This result would be consistent with
the hypothesis that MSU has tried to keep superstars by increasing top
wages more than the average, but not with the story that it has tried
to retain top Assistant Professors.

The na-GIC tells a totally different story. It is downward sloping.
Wages below the median have increased more than γ maintaining an
attractive wage policy for Assistant professors. For wages above the
median, they all increased less than average. So removing anonymity
reveal a phenomenon of wage compression at the top of the scale. A
potential explanation is that the academic market is less competitive
for full and endowed professors who are more reluctant to move.
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Table 4: Quantile probabilities for academic stayers with k = 4
p 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

GIC
Pr(GIC> 0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pr(GIC> γt) 0.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.02 0.00
Pr(Deriv> 0) 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 0.10 0.00

na-GIC
Pr(na-GIC> 0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pr(na-GIC> γt) 0.91 1.00 1.00 1.00 0.97 0.41 0.05 0.01 0.00 0.00 0.00
Pr(Deriv> 0) 0.93 0.74 0.00 0.00 0.00 0.00 0.05 0.10 0.00 0.00 0.01

Table 5: Quantile probabilities for academic stayers with k = 12
p 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

GIC
Pr(GIC> 0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pr(GIC> γt) 0.00 1.00 1.00 1.00 0.01 0.67 1.00 0.00 0.00 0.00 1.00
Pr(Deriv> 0) 1.00 0.17 1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00

na-GIC
Pr(na-GIC> 0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Pr(na-GIC> γt) 0.81 1.00 1.00 1.00 0.52 0.43 0.38 0.07 0.00 0.00 0.16
Pr(Deriv> 0) 0.35 0.36 0.72 0.02 0.10 0.65 0.27 0.21 0.35 0.13 0.84

Let us now confirm this judgement by examining the dominance
properties for each quantile in Tables 4 and 5. First of all, we have
the confirmation that the GIC has a varying slope while the na-GIC
has a slope which is always negative with at most some ambiguity for
the 10% quantile for k = 4. The na-GIC is always positive, which
means that all wages have increased. However, the na-GIC becomes
lower than the average growth rate right above the median without
ambiguity. Taking into account mobility along the wage distribution
can reveal very different patterns from a simple GIC.

5 Gender and ethnic issues at MSU

MSU displays an anti-discrimination policy on its web site where we
can find the following announcement in 2022:

Thus, even if not illegal, acts are prohibited under this policy if they
Discriminate against any University community member(s) through in-
appropriate limitation of employment opportunity , access to Univer-
sity residential facilities, or participation in education, athletic, social,
cultural, or other University activities on the basis of age, color, gen-
der, gender identity , disability status, height, marital status, national
origin, political persuasion, race, religion, sexual orientation, veteran
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status, or weight. [...] For purpose of this Policy, “employment oppor-
tunity” is defined as job access and placement, retention, promotion,
professional development, and salary.

What is the distance between cups and lips?

5.1 Gender issues

We have seen in Table 3 that in 2006 female academics were paid less
by 6% compared to males academics. For those who decided to stay till
2012, what was their wage rise? Do we see any type of compensation
in terms of a different wage increase for lower wages or is there an
everlasting wage discrimination against females?

For consistency with the previous part, we keep k=4 for estimating
GIC for males and females separately. We have 1,073 males and 511
females. Male and female academics follow the same tendency, but we

Table 6: Male and female academics
p 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Academic males
naGIC > 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
naGIC > γ 0.91 1.00 1.00 0.99 0.55 0.08 0.01 0.00 0.00 0.00 0.00

Academic females
naGIC > 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
naGIC > γ 0.57 1.00 1.00 1.00 1.00 0.93 0.74 0.54 0.35 0.08 0.05

Comparing academic males and females
Pr(Male > Female) 0.72 0.33 0.07 0.01 0.01 0.03 0.04 0.05 0.06 0.02 0.08

Comparing para-academic males and females
Pr(Male > Female) 0.34 0.55 0.82 0.92 0.89 0.64 0.25 0.05 0.04 0.15 0.70

notice that the female curve in Figure 7 is quite systematically over the
male curve, except for the minimum quantile. The overall probability
that male wages increases more than female wages is only of 0.13. So
there is a kind of compensation policy for females. They have a slightly
lower wage at the beginning, but their prospect for a wage increase is
greater than for males.

Let us now discover what is happening for para-academics. They
are 522 in number, 236 males and 286 females, a totaly different pro-
portion than for academics. The the wage equation reported in Table
7 indicates a penalty of 11% for females, so much more important than
for female academics.

The overall probability that the increase of male wages is greater
than that for females is now 0.49. So there is no general policy of com-
pensation despite the fact that the gender gap is much greater than for
academics. The two panels of Figure 7 illustrate gender differences for
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Table 7: Wage equation for para-academics stayers in 2006
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.638 0.038 282.422 0.000
Exp 0.019 0.005 3.893 0.000
Exp2 -0.000 0.000 -0.845 0.399
Instructor 0.094 0.039 2.407 0.016
Lecturer 0.078 0.088 0.884 0.377
Research Assoc 0.322 0.072 4.475 0.000
Specialist 0.293 0.030 9.670 0.000
Contract -0.113 0.032 -3.548 0.000
Female -0.107 0.023 -4.602 0.000
R2 0.363
σ 0.260
N 522

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
10

0.
20

0.
30

na−GIC for Academic stayers

p

G
ro

w
th

 ra
te

Male
Female
Growth rate

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

na−GIC for Para academics stayers

p

G
ro

w
th

 ra
te

Male
Female
Growth rate

Figure 7: Gender issues for wage dynamics

academics and para-academics. In dynamics, there is a very selective
gender policy at MSU in favour of academic females, even if Figure 7
shows that an important effort has been made for increasing low wages
for both genders.

5.2 Ethinc issues

The US Bureau of Census distinguishes essentially four ethnic groups
in the US: White, Black, Asian, Natives, the later including American
Indians, Alaska and Hawaii Natives. To this list is made the distinction
between Hispanic and non-Hispanic. Tzioumis (2018) gives the prob-
ability for a series of first names and last names to belong to a given
ethnic group, exploiting exploiting data from the US Census. We used
this methodology to classify names at MSU by ethnicity, using the R

package predictrace. There is however a large proportion, 17% of
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cases that this methodology fails to predict. We decided to solve these
795 cases by hand and it resulted that 88% of the unresolved cases
were likely to be classified as white according to the census classifi-
cation originating generally from Eastern Europe or from the MENA
region. We present in Table 8 wage characteristics of all the mem-
bers of MSU, academics, para-academics and administration for 2006
and 2012. Hispanic are quite few in number and seem to be the most

Table 8: Wages and ethnicity for stayers at MSU
Ethnicity Stayers Leavers q0.05 Mean q0.95 Mean

2006 2006 2006 2012
hispanic 65 63 $34,635 $71,236 $125,000 $87,917
asian 221 232 $36,000 $83,211 $154,500 $104,708
white 2,505 1,640 $37,038 $90,982 $171,649 $111,268
black 86 42 $32,060 $90,105 $190,530 $112,918

disadvantaged category. Blacks, also quite few in number, have both
the lowest q0.05 and the highest q0.95 in 2006. The exercise is now to
compare the wage growth rate of Hispanic, Asian and Black employees
to that of White ones. If we estimate a Mincer equation for explain-
ing the 2006 log wages for those who will stay till 2012, we only find
a significant negative wage different of 10% for Hispanic compared to
white employees. The question is now to know if as a compensation the

Table 9: Wage equation for MSU 2006 stayers
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.065 0.048 232.931 0.000
Exp 0.013 0.002 7.283 0.000
Exp2 -0.000 0.000 -3.744 0.000
Asian 0.001 0.021 0.048 0.962
Black 0.038 0.032 1.195 0.232

Hispanic -0.100 0.036 -2.770 0.006
Female -0.086 0.011 -7.488 0.000

R2 0.624
σ 0.287
N 2,877

Dummy variables were introduced for statuses, but
their coefficient were not reported here. They explain
roughly half of the variance.

wages of the Hispanic group has grown faster than that of the white
group. Looking for a degree of the Bernstein polynomial for white (the
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most important group), we find k = 6 for the BIC and k = 7 for the
AIC or DIC. For a fair comparison between groups, we adopted k = 6
for all the groups. When we compute the probabilities that the white
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Figure 8: Ethnic issues for wage dynamics

group has larger wage rise than a given group, we find 0.48 for the
Hispanic, 0.25 for Asian and 0.35 for Black. This means that Asian
have 0.75 chances of a higher pay rise than White, Black 0.65 and
Hispanic 0.52 when this group received on average a wage 10% lower
than White. Let us now try to detail wage growth by quantile. Table

Table 10: Who gets more than average?
Ethnicity 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
White 1.00 0.71 0.97 1.00 0.99 0.16 0.02 0.07 0.00 0.00 0.02
Hispanic 0.72 1.00 0.84 0.69 0.91 0.88 0.26 0.02 0.11 0.66 0.04
Asian 1.00 0.82 0.93 0.98 0.95 0.72 0.57 0.68 0.66 0.21 0.13
Black 1.00 0.46 0.54 0.92 0.71 0.21 0.29 0.86 0.92 0.26 0.38

10 tells us that above the median, the white group has 5% chances to
get a pay rise greater than the measured γ = 20%. For the Hispanic
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group, this probability goes up to 33%, but for the Asian group and
the Black group, this probability goes up respectively to 50% and 49%.

From all these numbers, combining the initial wage differentials
and the results from estimating a na-GIC, we can conclude to some
kind of affirmative action for the Asian and Black groups, while the
Hispanic group seems to be left behind. As seen in Appendix A, the
rate of exit for the Hispanic Assistant Professors is twice that of the
other groups. And when they are Associate, their chance of being
promoted full professor is a mere 5%, compared to 36% for Black, 32%
for Asian and 23% for White.

6 Conclusion

In this paper, we have defined a na-GIC based on conditional order-
ing in a bivariate distribution, following one of the options depicted
in Barnett (1976). This was coherent with the usual way of defin-
ing a na-GIC, taking the initial ranking of the first period px as the
reference. When analysing if growth was pro-poor, the measure of
Grimm (2007) detailed in (3) describes what has happened to those
who were initially poor. But, as underlined in Lo-Bue and Palmisano
(2020), it ignores what happens to those who become poor at the sec-
ond period. Taking the first period as the reference is justified on the
ground of life trajectories, career in our empirical application, as ini-
tial conditions determine greatly what is happening next. However,
the reference ordering can be of particular importance, specifically
when assessing welfare. This motivates Lo-Bue and Palmisano (2020)
to prefer promoting more robust welfare criteria that take into account
all individual trajectories and not only those determined by the initial
conditions. To come back to Barnett (1976) paper, this would lead
to consider another ordering than conditional ordering, such as for in-
stance reduced ordering. However, by adopting such an ordering, we
depart from the quantile transition matrix of Formby et al. (2004) and
all the related literature on the meaning of income mobility.

We have adopted a Bernstein regression in order to model and
smooth a conditional quantile function. This is a very convenient
way for introducing Bayesian inference and it proved to be very con-
venient for computing probabilities and comparing trajectories. How-
ever, there is the pitfall of selecting the degree of the Bernstein polyno-
mial. We have proposed to use three well-known information criteria
(BIC, AIC and DIC) for model selection. Generally speaking BIC
favours a much more parsimonious model whereas AIC and DIC usu-
ally agree for a larger parametrisation, which may be preferred when
there are many observations. But we should also warn against the
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danger of over-fitting when using a Bernstein polynomial. It has a
tendency to pick up unobserved heterogeneity, for instance if we had
decided to use a Bernstein polynomial for modelling the non-linear ef-
fect of experience in our Mincer wage equations. But this is of course
a different topic, which needs further investigation.
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Appendix

A Transition matrices for academics by

ethnicity

Table 11: Transition matrices for Academics by ethnicity
Assist Assoc Full Endowed Exit Other

Hispanic
Assistant Prof 0.219 0.156 0.000 0.000 0.625 0.000
Associate Prof 0.000 0.789 0.053 0.000 0.158 0.000
Full Prof 0.000 0.000 0.667 0.000 0.083 0.250
Endowed Prof 0.000 0.000 0.000 0.000 0.000 0.000

Black
Assistant Prof 0.261 0.348 0.000 0.000 0.348 0.043
Associate Prof 0.000 0.429 0.357 0.000 0.143 0.071
Full Prof 0.000 0.000 0.667 0.000 0.125 0.208
Endowed Prof 0.000 0.000 0.000 0.500 0.500 0.000

Asian
Assistant Prof 0.174 0.404 0.000 0.000 0.422 0.000
Associate Prof 0.000 0.464 0.321 0.018 0.161 0.036
Full Prof 0.000 0.000 0.679 0.054 0.179 0.089
Endowed Prof 0.000 0.000 0.000 0.500 0.250 0.250

White
Assistant Prof 0.236 0.337 0.010 0.000 0.390 0.028
Associate Prof 0.002 0.477 0.225 0.004 0.223 0.069
Full Prof 0.000 0.000 0.590 0.034 0.290 0.086
Endowed Prof 0.000 0.000 0.044 0.567 0.267 0.122

The column Other represents other cases such as emeritus, ad-
ministrative or para-academic positions. The total number of aca-
demics staying or quitting is 1,916 for White, 229 for Asian, 63
for Hispanic and 63 for Black. So the transition matrices are to
be interpreted with caution for Black and Hispanic.
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