F. Efficient-implementation-of-the and .. , 101 6.4.2 Permanent and non permanent information, Memory and time question, p.112

J. Maxwell, A treatise on electricity and magnetism, p.1881

C. Munz, . Omnes, . Schneider, U. Sonnendrücker, and . Voss, Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model, Journal of Computational Physics, vol.161, issue.2, pp.484-511, 2000.
DOI : 10.1006/jcph.2000.6507

A. Dedner, F. Kemm, D. Kröner, C. Munz, T. Schnitzer et al., Hyperbolic Divergence Cleaning for the MHD Equations, Journal of Computational Physics, vol.175, issue.2, pp.645-673, 2002.
DOI : 10.1006/jcph.2001.6961

S. Kane and . Yee, Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media, IEEE Transactions on Antennas and Propagation, vol.14, issue.3, pp.302-307, 1966.
DOI : 10.1109/TAP.1966.1138693

A. Taflove, R. Korada, and . Umashankar, The Finite-Difference Time-Domain Method for Numerical Modeling of Electromagnetic Wave Interactions, Electromagnetics, vol.27, issue.1-2, pp.105-126, 1990.
DOI : 10.1109/TAP.1987.1144000

M. Thevenot, B. Reineix, and . Jecko, A new FDTD surface impedance formalism to study PBG structures. Microwave and optical technology letters, pp.203-206, 1998.

M. Dennis and . Sullivan, Electromagnetic simulation using the FDTD method, 2013.

P. Houston, I. Perugia, A. Schneebeli, and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations, Numerische Mathematik, vol.169, issue.3, pp.485-518, 2005.
DOI : 10.1007/s00211-005-0604-7

B. Cockburn, E. George, C. Karniadakis, and . Shu, The Development of Discontinuous Galerkin Methods, 2000.
DOI : 10.1007/978-3-642-59721-3_1

D. Colton and R. Kress, Integral equation methods in scattering theory, SIAM, vol.72, 2013.
DOI : 10.1137/1.9781611973167

J. Richmond, Scattering by a dielectric cylinder of arbitrary cross section shape, IEEE Transactions on Antennas and Propagation, vol.13, issue.3, pp.334-341, 1965.
DOI : 10.1109/TAP.1965.1138427

F. Roger and . Harrington, The method of moments in electromagnetics, Journal of Electromagnetic Waves and Applications, vol.1, issue.3, pp.181-200, 1987.

F. Andrew, . Peterson, L. Scott, R. Ray, and . Mittra, Computational methods for electromagnetics, 1998.

J. De and Z. , On the 3D electromagnetic quantitative inverse scattering problem : algorithms and regularization, 2009.

P. Kumar-banerjee and R. Butterfield, Boundary element methods in engineering science, 1981.

J. Jin, J. Jin, and J. Jin, The finite element method in electromagnetics, pp.10-39, 2002.

P. Collino, G. Delbue, P. Joly, and A. Piacentini, A new interface condition in the non-overlapping domain decomposition method for the Maxwell equations Computer methods in applied mechanics and engineering, pp.195-207, 1997.

Y. Saad, H. Martin, and . Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing, vol.7, issue.3, pp.856-869, 1986.
DOI : 10.1137/0907058

C. Lanczos, Solution of systems of linear equations by minimized iterations, Journal of Research of the National Bureau of Standards, vol.49, issue.1, pp.33-53, 1952.
DOI : 10.6028/jres.049.006

A. Henk, . Van-der, and . Vorst, Bi-CGSTAB : A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM Journal on scientific and Statistical Computing, vol.13, issue.2, pp.631-644, 1992.

G. Oliver, . Ernst, J. Martin, and . Gander, Why it is difficult to solve Helmholtz problems with classical iterative methods, Numerical Analysis of Multiscale Problems, pp.325-363

W. Hackbusch, Iterative solution of large sparse systems of equations, 1994.

Y. Saad, Iterative methods for sparse linear systems. Siam, pp.71-75, 2003.

N. Marsic and C. Geuzaine, Efficient finite element assembly of high order Whitney forms, 2014.

P. Lions, On the Schwarz alternating method. I. In First international symposium on domain decomposition methods for partial differential equations, pp.1-42, 1988.

P. Lions, On the Schwarz alternating method III : a variant for nonoverlapping subdomains, Third international symposium on domain decomposition methods for partial differential equations, pp.202-223, 1990.

F. Collino, S. Ghanemi, and P. Joly, Domain decomposition method for harmonic wave propagation : a general presentation Computer methods in applied mechanics and engineering, pp.171-211, 2000.

B. Després, Une méthodes de décomposition de domaine pour lesprobì emes de propagation d'ondes en régime harmonique. Le théorème de Borg pour l'´ equation de Hill vectorielle, 1991.

X. Cai, B. Olof, and . Widlund, Domain Decomposition Algorithms for Indefinite Elliptic Problems, SIAM Journal on Scientific and Statistical Computing, vol.13, issue.1, pp.243-258, 1992.
DOI : 10.1137/0913013

X. Cai, B. Olof, and . Widlund, Multiplicative Schwarz Algorithms for Some Nonsymmetric and Indefinite Problems, SIAM Journal on Numerical Analysis, vol.30, issue.4, pp.936-952, 1993.
DOI : 10.1137/0730049

O. Cessenat and B. Despres, Une nouvelle formulation variationnelle deséquationsdeséquations d'onde en fréquence, 1994.

J. Benamou, A massively parallel algorithm for the optimal control of systems governed by elliptic pde's, PPSC, pp.90-95, 1995.

J. Benamou, A Domain Decomposition Method with Coupled Transmission Conditions for the Optimal Control of Systems Governed by Elliptic Partial Differential Equations, SIAM Journal on Numerical Analysis, vol.33, issue.6, pp.2401-2416, 1996.
DOI : 10.1137/S0036142994267102

B. Després, Domain decomposition method and the Helmholtz problem Mathematical and numerical aspects of wave propagation phenomena, pp.44-52, 1991.

B. Stupfel, A fast-domain decomposition method for the solution of electromagnetic scattering by large objects, IEEE Transactions on Antennas and Propagation, vol.44, issue.10, pp.1375-1385, 1996.
DOI : 10.1109/8.537332

C. Farhat, A. Macedo, M. Lesoinne, F. Roux, F. Magoulés et al., Two-level domain decomposition methods with lagrange multipliers for the fast iterative solution of acoustic scattering problems Computer methods in applied mechanics and engineering, pp.213-239, 2000.

C. Farhat, A. Macedo, and M. Lesoinne, A two-level domain decomposition method for the iterative solution of high frequency exterior Helmholtz problems, Numerische Mathematik, vol.85, issue.2, pp.283-308, 2000.
DOI : 10.1007/PL00005389

C. Wolfe, . Navsariwala, D. Stephen, and . Gedney, A parallel finite-element tearing and interconnecting algorithm for solution of the vector wave equation with PML absorbing medium, IEEE Transactions on Antennas and Propagation, vol.48, issue.2, pp.278-284, 2000.
DOI : 10.1109/8.833077

C. Farhat, M. Lesoinne, P. Letallec, K. Pierson, and D. Rixen, FETI-DP: a dual-primal unified FETI method?part I: A faster alternative to the two-level FETI method, International Journal for Numerical Methods in Engineering, vol.7, issue.7, pp.1523-1544, 2001.
DOI : 10.1002/nme.76

C. Farhat and F. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, International Journal for Numerical Methods in Engineering, vol.28, issue.6, pp.1205-1227, 1991.
DOI : 10.1002/nme.1620320604

Y. Li and J. Jin, A Vector Dual-Primal Finite Element Tearing and Interconnecting Method for Solving 3-D Large-Scale Electromagnetic Problems, IEEE Transactions on Antennas and Propagation, vol.54, issue.10, pp.3000-3009, 2006.
DOI : 10.1109/TAP.2006.882191

C. Farhat, P. Avery, R. Tezaur, and J. Li, FETI-DPH: A DUAL-PRIMAL DOMAIN DECOMPOSITION METHOD FOR ACOUSTIC SCATTERING, Journal of Computational Acoustics, vol.13, issue.03, pp.499-524, 2005.
DOI : 10.1142/S0218396X05002761

Y. Li and J. Jin, A New Dual-Primal Domain Decomposition Approach for Finite Element Simulation of 3-D Large-Scale Electromagnetic Problems, IEEE Transactions on Antennas and Propagation, vol.55, issue.10, pp.2803-2810, 2007.
DOI : 10.1109/TAP.2007.905954

Z. Peng and J. Lee, Non-conformal domain decomposition method with second-order transmission conditions for time-harmonic electromagnetics, Journal of Computational Physics, vol.229, issue.16, pp.5615-5629, 2010.
DOI : 10.1016/j.jcp.2010.03.049

Y. Boubendir, X. Antoine, and C. Geuzaine, A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation, Journal of Computational Physics, vol.231, issue.2, pp.262-280, 2012.
DOI : 10.1016/j.jcp.2011.08.007

URL : https://hal.archives-ouvertes.fr/hal-01094828

Y. Boubendir, X. Antoine, and C. Geuzaine, A Non-overlapping Quasi-optimal Optimized Schwarz Domain Decomposition Algorithm for the Helmholtz Equation, Domain Decomposition Methods in Science and Engineering XX, number 91 in Lecture Notes in Computational Science and Engineering, pp.519-526
DOI : 10.1007/978-3-642-35275-1_61

URL : https://hal.archives-ouvertes.fr/hal-01094828

B. Stupfel, Absorbing boundary conditions on arbitrary boundaries for the scalar and vector wave equations, IEEE Transactions on Antennas and Propagation, vol.42, issue.6, pp.773-780, 1994.
DOI : 10.1109/8.301695

Y. Li and J. Jin, Implementation of the Second-Order ABC in the FETI-DPEM Method for 3D EM Problems, IEEE Transactions on Antennas and Propagation, vol.56, issue.8, pp.2765-2769, 2008.
DOI : 10.1109/TAP.2008.927579

F. Ben-belgacem, Y. Buffa, and . Maday, The Mortar Finite Element Method for 3D Maxwell Equations: First Results, SIAM Journal on Numerical Analysis, vol.39, issue.3, pp.880-901, 2001.
DOI : 10.1137/S0036142999357968

Y. Achdou, C. Japhet, Y. Maday, and F. Nataf, A new cement to glue non-conforming grids with Robin interface conditions: The finite volume case, Numerische Mathematik, vol.92, issue.4, pp.593-620, 2002.
DOI : 10.1007/s002110100336

S. Lee, N. Marinos, J. Vouvakis, and . Lee, A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays, Journal of Computational Physics, vol.203, issue.1, pp.1-21, 2005.
DOI : 10.1016/j.jcp.2004.08.004

N. Marinos, Z. Vouvakis, J. Cendes, and . Lee, A FEM domain decomposition method for photonic and electromagnetic band gap structures, IEEE Transactions on Antennas and Propagation, vol.54, issue.2, pp.721-733, 2006.

M. Vouvakis, K. Zhao, S. Seo, and J. Lee, A domain decomposition approach for non-conformal couplings between finite and boundary elements for unbounded electromagnetic problems in, Journal of Computational Physics, vol.225, issue.1, pp.975-994, 2007.
DOI : 10.1016/j.jcp.2007.01.014

G. Karypis and V. Kumar, Metis : Family of multilevel partitioning algorithms. wwwusers. cs. umn. edu/? karypis/metis/main. shtml, pp.66-77, 1995.

I. Voznyuk, H. Tortel, and A. Litman, SCATTERED FIELD COMPUTATION WITH AN EXTENDED FETI-DPEM2 METHOD, Progress In Electromagnetics Research, vol.139, issue.14, pp.32-34, 2013.
DOI : 10.2528/PIER13020113

URL : https://hal.archives-ouvertes.fr/hal-00944613

E. Lawrence, . Larsen, H. John, and . Jacobi, Microwave scattering parameter imagery of an isolated canine kidney, Medical physics, vol.6, issue.5, pp.394-403, 1979.

L. Jofre, S. Mark, A. Hawley, E. Broquetas, M. De-los-reyes et al., Medical imaging with a microwave tomographic scanner, IEEE Transactions on Biomedical Engineering, vol.37, issue.3, pp.303-312, 1990.
DOI : 10.1109/10.52331

K. Langenberg, . Brandfass, . Fellinger, T. Gurke, and . Kreutter, A Unified Theory of Multidimensional Electromagnetic Vector Inverse Scattering Within the Kirchhoff or Born Approximation, Radar Target Imaging, pp.113-151, 1994.
DOI : 10.1007/978-3-642-85112-4_4

C. Avinash, M. Kak, and . Slaney, Principles of computerized tomographic imaging, Society for Industrial and Applied Mathematics, 2001.

R. Kleinman, P. Van-den, and . Berg, A modified gradient method for two- dimensional problems in tomography, Journal of Computational and Applied Mathematics, vol.42, issue.1, pp.17-35, 1992.
DOI : 10.1016/0377-0427(92)90160-Y

J. Anthony, . Devaney, A. Edwin, F. K. Marengo, and . Gruber, Time-reversal-based imaging and inverse scattering of multiply scattering point targets, The Journal of the Acoustical Society of America, vol.118, issue.5, pp.3129-3138, 2005.

M. Cheney, The linear sampling method and the MUSIC algorithm, Inverse Problems, vol.17, issue.4, p.591, 2001.
DOI : 10.1088/0266-5611/17/4/301

D. Colton and P. Monk, A Linear Sampling Method for the Detection of Leukemia Using Microwaves, SIAM Journal on Applied Mathematics, vol.58, issue.3, pp.926-941, 1998.
DOI : 10.1137/S0036139996308005

D. Colton, H. Haddar, and M. Piana, The linear sampling method in inverse electromagnetic scattering theory, Inverse Problems, vol.19, issue.6, p.105, 2003.
DOI : 10.1088/0266-5611/19/6/057

URL : https://hal.archives-ouvertes.fr/hal-00744163

A. Kirsch, The MUSIC-algorithm and the factorization method in inverse scattering theory for inhomogeneous media, Inverse Problems, vol.18, issue.4, p.1025, 2002.
DOI : 10.1088/0266-5611/18/4/306

C. Prada, S. Manneville, D. Spoliansky, and M. Fink, Decomposition of the time reversal operator: Detection and selective focusing on two scatterers, The Journal of the Acoustical Society of America, vol.99, issue.4, pp.2067-2076, 1996.
DOI : 10.1121/1.415393

H. Tortel, G. Micolau, and M. Saillard, Decomposition of the Time Reversal Operator for Electromagnetic Scattering, Journal of Electromagnetic Waves and Applications, vol.41, issue.5, pp.687-719, 1999.
DOI : 10.1163/156939399X01113

URL : https://hal.archives-ouvertes.fr/hal-00082837

X. Zhang, H. Tortel, A. Litman, and J. Geffrin, An extended-DORT method and its application in a cavity configuration, Inverse Problems, vol.28, issue.11, pp.115008-2012
DOI : 10.1088/0266-5611/28/11/115008

URL : https://hal.archives-ouvertes.fr/hal-00944610

M. Peter, . Van-den, . Berg, E. Ralph, and . Kleinman, A contrast source inversion method Inverse problems, p.1607, 1997.

M. Peter, A. Van-den-berg, A. Van-broekhoven, and . Abubakar, Extended contrast source inversion, Inverse Problems, vol.15, issue.5, p.1325, 1999.

A. Abubakar, M. Peter, . Van-den, . Berg, J. Jordi et al., Imaging of biomedical data using a multiplicative regularized contrast source inversion method, IEEE Transactions on Microwave Theory and Techniques, vol.50, issue.7, pp.1761-1771, 2002.
DOI : 10.1109/TMTT.2002.800427

A. Abubakar, M. Tarek, . Habashy, M. Peter, . Van-den et al., The diagonalized contrast source approach: an inversion method beyond the Born approximation, Inverse Problems, vol.21, issue.2, p.685, 2005.
DOI : 10.1088/0266-5611/21/2/015

W. Chew and Y. Wang, Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method, IEEE Transactions on Medical Imaging, vol.9, issue.2, pp.218-225, 1990.
DOI : 10.1109/42.56334

N. Joachimowicz, C. Pichot, and J. Hugonin, Inverse scattering: an iterative numerical method for electromagnetic imaging, IEEE Transactions on Antennas and Propagation, vol.39, issue.12, pp.1742-1753, 1991.
DOI : 10.1109/8.121595

URL : https://hal.archives-ouvertes.fr/hal-01384775

A. Franchois and C. Pichot, Microwave imaging-complex permittivity reconstruction with a Levenberg-Marquardt method, IEEE Transactions on Antennas and Propagation, vol.45, issue.2, pp.203-215, 1997.
DOI : 10.1109/8.560338

URL : https://hal.archives-ouvertes.fr/hal-00986336

G. Anton, K. Tijhuis, . Belkebir, C. Amelie, . Litman et al., Theoretical and computational aspects of 2-d inverse profiling, IEEE Transactions on Geoscience and Remote Sensing, vol.39, issue.6, pp.1316-1330, 2001.

A. Franchois and A. Tijhuis, A quasi-Newton reconstruction algorithm for a complex microwave imaging scanner environment, Radio Science, vol.39, issue.2, 2003.
DOI : 10.1029/2001RS002590

L. Garnero, A. Franchois, J. Hugonin, C. Pichot, and N. Joachimowicz, Microwave imaging-complex permittivity reconstruction-by simulated annealing, IEEE Transactions on Microwave Theory and Techniques, vol.39, issue.11, pp.1801-1807, 1991.
DOI : 10.1109/22.97480

URL : https://hal.archives-ouvertes.fr/hal-01384946

S. Caorsi, A. Massa, and M. Pastorino, A computational technique based on a real-coded genetic algorithm for microwave imaging purposes, IEEE Transactions on Geoscience and Remote Sensing, vol.38, issue.4, pp.1697-1708, 2000.
DOI : 10.1109/36.851968

URL : https://hal.archives-ouvertes.fr/hal-01170128

J. Geffrin and P. Sabouroux, Continuing with the Fresnel database: experimental setup and improvements in 3D scattering measurements, Inverse Problems, vol.25, issue.2, pp.24001-81, 2009.
DOI : 10.1088/0266-5611/25/2/024001

URL : https://hal.archives-ouvertes.fr/hal-00367473

A. Litman and L. Crocco, Testing inversion algorithms againts experimental data : 3d targets, Inverse Problems, vol.25, issue.2, pp.1-20, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00438278

F. Roger and . Harrington, Time-harmonic electromagnetic fields, 1961.

G. Jean and . Van-bladel, Electromagnetic fields, 2007.

F. Magdy and . Iskander, Electromagnetic fields and waves, 2013.

B. Thomas, J. L. Senior, and . Volakis, Approximate boundary conditions in electromagnetics . Number 41, Iet, 1995.

B. Bevan, E. T. Baker, and . Copson, The mathematical theory of Huygens' principle, American Mathematical Soc, vol.329, 2003.

J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.
DOI : 10.1006/jcph.1994.1159

J. A. Stratton, Electromagnetic theory, 2007.
DOI : 10.1002/9781119134640

N. Ida, Engineering electromagnetics, 2004.

A. Sommerfeld, Partial differential equations in physics, 1949.

W. Cho, C. William, and H. Weedon, A 3d perfectly matched medium from modified Maxwell's equations with stretched coordinates. Microwave and optical technology letters, pp.599-604, 1994.

S. Zachary, . Sacks, M. David, R. Kingsland, J. Lee et al., A perfectly matched anisotropic absorber for use as an absorbing boundary condition, IEEE Transactions on Antennas and Propagation, vol.43, issue.12, pp.1460-1463, 1995.

R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bulletin of the American Mathematical Society, vol.49, issue.1, pp.1-23, 1943.
DOI : 10.1090/S0002-9904-1943-07818-4

S. Iain, A. M. Duff, J. Erisman, and . Reid, Direct methods for sparse matrices, 1986.

M. Xue and J. Jin, Nonconformal FETI-DP Methods for Large-Scale Electromagnetic Simulation, IEEE Transactions on Antennas and Propagation, vol.60, issue.9, pp.4291-4305, 2012.
DOI : 10.1109/TAP.2012.2207076

Y. Li and J. Jin, Parallel implementation of the FETI-DPEM algorithm for general 3D EM simulations, Journal of Computational Physics, vol.228, issue.9, pp.3255-3267, 2009.
DOI : 10.1016/j.jcp.2009.01.029

T. Belytschko, Y. Y. Lu, and L. Gu, Element-free Galerkin methods, International Journal for Numerical Methods in Engineering, vol.95, issue.2, pp.229-256, 1994.
DOI : 10.1002/nme.1620370205

R. Lencrerot, Outils de modélisation et d'imagerie pour un scanner micro-onde : Application au contrôle de la teneur en eau d'une colonne de sol, p.16, 2008.

C. Farhat, P. Chen, and F. Roux, The Dual Schur Complement Method with Well-Posed Local Neumann Problems: Regularization with a Perturbed Lagrangian Formulation, SIAM Journal on Scientific Computing, vol.14, issue.3, pp.752-759, 1993.
DOI : 10.1137/0914047

L. Armel-de, C. Bourdonnaye, and . Farhat, Antonini Macedo, FrédéricMagouì es, François- Xavier Roux, et al. A non-overlapping domain decomposition method for the exterior Helmholtz problem, Contemporary Mathematics, vol.218, issue.2, pp.42-66, 1998.

P. Le and T. , Domain decomposition methods in computational mechanics Computational mechanics advances, pp.121-220, 1994.

C. Farhat, R. Tezaur, and J. Toivanen, A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers, International Journal for Numerical Methods in Engineering, vol.155, issue.13, pp.1513-1531, 2009.
DOI : 10.1002/nme.2534

M. Victorita-dolean, L. Gander, and . Gerardo-giorda, Optimized Schwarz methods for Maxwell equations. arXiv preprint math, 2006.

F. Brezzi and L. Marini, A three-field domain decomposition method In Domain Decomposition Methods in Science and Engineering : The Sixth International Conference on Domain Decomposition, pp.27-46, 1992.

Y. Boubendir, M. Bendali, and . Fares, Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method, International Journal for Numerical Methods in Engineering, vol.67, issue.11, pp.1624-1650, 2008.
DOI : 10.1002/nme.2136

M. E. Victorita-dolean, . Bouajaji, J. Martin, S. Gander, R. Lanteri et al., Domain decomposition methods for electromagnetic wave propagation problems in heterogeneous media and complex domains, In Domain Decomposition Methods in Science and Engineering XIX, pp.15-26, 2011.

C. Farhat, Implicit parallel processing in structural mechanics, Compt. Mech. Adv, vol.2, pp.1-124, 1994.

M. Lesoinne and K. Pierson, FETI-DP : An efficient, scalable and unified dual-primal FETI method, 1999.

D. Klatte and K. Tammer, Strong stability of stationary solutions and Karush-Kuhn-Tucker points in nonlinear optimization, Annals of Operations Research, vol.19, issue.1, pp.285-307, 1990.
DOI : 10.1007/BF02055199

J. Jin, J. Douglas, and . Riley, Finite Element Analysis of Complex Antennas and Arrays, IEEE Transactions on Antennas and Propagation, vol.56, issue.8, pp.24-37, 2009.
DOI : 10.1109/TAP.2008.926776

F. Roux, . Magoules, Y. Series, and . Boubendir, Approximation of Optimal Interface Boundary Conditions for Two-Lagrange Multiplier FETI Method, In Domain Decomposition Methods in Science and Engineering, pp.283-290, 2005.
DOI : 10.1007/3-540-26825-1_27

URL : https://hal.archives-ouvertes.fr/hal-00827450

M. Yang and X. Sheng, On the Finite Element Tearing and Interconnecting Method for Scattering by Large 3D Inhomogeneous Targets, International Journal of Antennas and Propagation, vol.7, issue.10, pp.32-33, 2011.
DOI : 10.1109/TAP.2007.904107

H. Whitney, Geometric Integration Theory, 1957.
DOI : 10.1515/9781400877577

J. C. Nedelec, Mixed finite elements in ?3, Numerische Mathematik, vol.12, issue.3, pp.315-341, 1980.
DOI : 10.1007/BF01396415

W. Cho and C. , Waves and fields in inhomogeneous media, 1995.

R. Patrick, . Amestoy, S. Iain, J. Duff, and . Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers Computer methods in applied mechanics and engineering, pp.501-520, 2000.

C. Geuzaine and J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.69, issue.4, pp.1309-1331, 2009.
DOI : 10.1002/nme.2579

R. Patrick, . Amestoy, S. Iain, . Duff, L. Jean-yves et al., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications, vol.23, issue.64, pp.15-41, 2001.

J. Benamou and B. Desprès, A Domain Decomposition Method for the Helmholtz Equation and Related Optimal Control Problems, Journal of Computational Physics, vol.136, issue.1, pp.68-82, 1997.
DOI : 10.1006/jcph.1997.5742

URL : https://hal.archives-ouvertes.fr/inria-00073899

A. Timothy and . Davis, Algorithm 832 : Umfpack v4. 3?an unsymmetric-pattern multifrontal method, ACM Transactions on Mathematical Software (TOMS), vol.30, issue.2, pp.196-199, 2004.

A. Walter-edwin, The principle of minimized iterations in the solution of the matrix eigenvalue problem, Quarterly of Applied Mathematics, vol.9, issue.1, pp.17-29, 1951.

B. Despres, P. Joly, and J. Roberts, A domain decomposition method for the harmonic Maxwell's equations, IMACS, International Symposium on Iterative Methods in Linear Algebra, pp.475-484, 1992.

R. Tezaur, A. Macedo, and C. Farhat, Iterative solution of large???scale acoustic scattering problems with multiple right hand???sides by a domain decomposition method with Lagrange multipliers, International Journal for Numerical Methods in Engineering, vol.8, issue.10, pp.1175-1193, 2001.
DOI : 10.1002/nme.212

C. Eyraud, J. Geffrin, P. Sabouroux, C. Patrick, H. Chaumet et al., Validation of a 3D bistatic microwave scattering measurement setup, Radio Science, vol.39, issue.80, pp.2737-2746, 2008.
DOI : 10.1029/2008RS003836

URL : https://hal.archives-ouvertes.fr/hal-00348506

J. Dauchet, Analyse radiative des photobioréacteurs, 2012.

R. Simon and . Arridge, Optical tomography in medical imaging Inverse problems, p.41, 1999.

J. Abhijit, F. Chaudhari, . Darvas, R. James, . Bading et al., Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging, Physics in medicine and biology, vol.50, issue.23, p.5421, 2005.

M. Schweiger, R. Simon, I. Arridge, and . Nissilä, Gauss???Newton method for image reconstruction in diffuse optical tomography, Physics in Medicine and Biology, vol.50, issue.10, p.2365, 2005.
DOI : 10.1088/0031-9155/50/10/013

G. Marin, C. Guerin, S. Baillet, L. Garnero, and G. Meunier, Influence of skull anisotropy for the forward and inverse problem in EEG: Simulation studies using FEM on realistic head models, Human Brain Mapping, vol.21, issue.4, pp.250-269, 1998.
DOI : 10.1002/(SICI)1097-0193(1998)6:4<250::AID-HBM5>3.0.CO;2-2

M. Seger, G. Fischer, R. Modre, B. Messnarz, F. Hanser et al., Lead field computation for the electrocardiographic inverse problem-finite elements versus boundary elements. Computer methods and programs in biomedicine, pp.241-252, 2005.

A. Assad, . Oberai, H. Nachiket, G. R. Gokhale, and . Feijoo, Solution of inverse problems in elasticity imaging using the adjoint method, Inverse Problems, vol.19, issue.2, p.297, 2003.

J. Lu, X. Zhou, L. Madhavan, and . Raghavan, Inverse elastostatic stress analysis in pre-deformed biological structures: Demonstration using abdominal aortic aneurysms, Journal of Biomechanics, vol.40, issue.3, pp.693-696, 2007.
DOI : 10.1016/j.jbiomech.2006.01.015

F. Arizzi and E. Rizzi, Elastoplastic parameter identification by simulation of static and dynamic indentation tests, Modelling and Simulation in Materials Science and Engineering, vol.22, issue.3, pp.35017-2014
DOI : 10.1088/0965-0393/22/3/035017

G. Xu, H. Wu, S. Yang, S. Liu, Y. Li et al., 3-d electrical impedance tomography forward problem with finite element method, IEEE Transactions on Magnetics, vol.41, issue.5, pp.1832-1835, 2005.

F. Hettlich, Fréchet derivatives in inverse obstacle scattering Inverse problems, p.371, 1995.

C. Xie, . Huang, . Beck, . Hoyle, . Thorn et al., Electrical capacitance tomography for flow imaging: system model for development of image reconstruction algorithms and design of primary sensors, IEE Proceedings G (Circuits, Devices and Systems), pp.89-98, 1992.
DOI : 10.1049/ip-g-2.1992.0015

M. Soleimani, R. William, A. J. Lionheart, X. Peyton, . Ma et al., A three-dimensional inverse finite-element method applied to experimental eddy-current imaging data, IEEE Transactions on Magnetics, vol.42, issue.5, pp.1560-1567, 2006.
DOI : 10.1109/TMAG.2006.871255

A. Zakaria, I. Jeffrey, and J. Lovetri, FULL-VECTORIAL PARALLEL FINITE-ELEMENT CONTRAST SOURCE INVERSION METHOD, Progress In Electromagnetics Research, vol.142, pp.463-483
DOI : 10.2528/PIER13080706

T. Ioannis, . Rekanos, V. Traianos, . Yioultsis, D. Theodoros et al., Inverse scattering using the finite-element method and a nonlinear optimization technique, IEEE Transactions on Microwave Theory and Techniques, vol.47, issue.3, pp.336-344, 1999.

W. Rachowicz and A. Zdunek, Application of the FEM with adaptivity for electromagnetic inverse medium scattering problems, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.29-32, pp.2337-2347, 2011.
DOI : 10.1016/j.cma.2011.04.005

C. Schwarzbach and E. Haber, Finite element based inversion for time-harmonic electromagnetic problems, Geophysical Journal International, vol.193, issue.2, pp.615-634
DOI : 10.1093/gji/ggt006

A. Litman, J. Lencrerot, and . Geffrin, Combining spatial support information and shape-based method for tomographic imaging inside a microwave cylindrical scanner, Inverse Problems in Science and Engineering, vol.1, issue.1, pp.19-34, 2010.
DOI : 10.1088/0266-5611/24/3/035015

URL : https://hal.archives-ouvertes.fr/hal-00453662

R. Lencrerot, A. Litman, H. Tortel, and J. Geffrin, Measurement strategies for a confined microwave circular scanner, Inverse Problems in Science and Engineering, vol.17, issue.6, pp.787-802, 2009.
DOI : 10.1080/17415970802577012

URL : https://hal.archives-ouvertes.fr/hal-00438249

R. Lencrerot, A. Litman, H. Tortel, and J. Geffrin, Imposing Zernike representation for imaging two-dimensional targets, Inverse Problems, vol.25, issue.3, p.35012, 2009.
DOI : 10.1088/0266-5611/25/3/035012

URL : https://hal.archives-ouvertes.fr/hal-00438246

O. Cmielewski, H. Tortel, A. Litman, and M. Saillard, A Two-Step Procedure for Characterizing Obstacles Under a Rough Surface From Bistatic Measurements, IEEE Transactions on Geoscience and Remote Sensing, vol.45, issue.9, pp.2850-2858, 2007.
DOI : 10.1109/TGRS.2007.902289

URL : https://hal.archives-ouvertes.fr/hal-00438258

E. Attardo, G. Vecchi, and L. Crocco, A new hybrid FEM-IE inversion method for helmholtz scalar problems, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), 2013.
DOI : 10.1109/APS.2013.6710836

A. Franchois and A. Tijhuis, Quantitative microwave imaging in a complex environment, Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA 01), pp.519-522, 2001.

. Weng-chow-chew, . Wang, D. Otto, J. Lesselier, and . Bolomey, On the inverse source method of solving inverse scattering problems, Inverse Problems, vol.10, issue.3, p.547, 1994.
DOI : 10.1088/0266-5611/10/3/004

C. Eyraud, A. Litman, W. Hérique, and . Kofman, Microwave imaging from experimental data within a Bayesian framework with realistic random noise, Inverse Problems, vol.25, issue.2, p.24005, 2009.
DOI : 10.1088/0266-5611/25/2/024005

URL : https://hal.archives-ouvertes.fr/insu-00409963

T. , C. David, and J. Wall, On fréchet differentiability of some nonlinear operators occurring in inverse problems : an implicit function theorem approach, Inverse Problems, vol.6, issue.6, p.949, 1990.

A. Litman and K. Belkebir, Two-dimensional inverse profiling problem using phaseless data, Journal of the Optical Society of America A, vol.23, issue.11, pp.2737-2746, 2006.
DOI : 10.1364/JOSAA.23.002737

URL : https://hal.archives-ouvertes.fr/hal-00082943

A. Van-den and . Bos, Complex gradient and Hessian, Vision, Image and Signal Processing, pp.380-383, 1994.
DOI : 10.1049/ip-vis:19941555

C. Dong, J. Liu, and . Nocedal, On the limited memory bfgs method for large scale optimization, Mathematical programming, vol.45, issue.1-3, pp.503-528, 1989.

R. Fletcher, Practical methods of optimization, 2013.
DOI : 10.1002/9781118723203

H. Richard, P. Byrd, J. Lu, C. Nocedal, and . Zhu, A limited memory algorithm for bound constrained optimization, SIAM Journal on Scientific Computing, vol.16, issue.5, pp.1190-1208, 1995.

C. Zhu, H. Richard, P. Byrd, J. Lu, and . Nocedal, L-bfgs-b : a limited memory fortran code for solving bound constrained optimization problems, 1994.

C. Eyraud, J. Geffrin, A. Litman, and J. Spinelli, A large 3D target with small inner details: A difficult cocktail for imaging purposes without a priori knowledge on the scatterers geometry, Radio Science, vol.43, issue.5, p.2012
DOI : 10.1029/2010RS004632

W. Chew and J. Lin, A frequency-hopping approach for microwave imaging of large inhomogeneous bodies, IEEE Microwave and Guided Wave Letters, vol.5, issue.12, pp.439-441, 1995.
DOI : 10.1109/75.481854

M. Ovidio, G. Bucci, and . Franceschetti, On the degrees of freedom of scattered fields, IEEE Transactions on Antennas and Propagation, vol.37, issue.7, pp.918-926, 1989.

M. Ovidio, L. Bucci, T. Crocco, V. Isernia, and . Pascazio, Subsurface inverse scattering problems : quantifying, qualifying, and achieving the available information, IEEE Transactions on Geoscience and Remote Sensing, issue.11, p.630, 2001.

Z. Peng and A. Tijhuis, Transient Scattering by a Lossy Dielectric Cylinder: Marching-on-in-Frequency Approach, Journal of Electromagnetic Waves and Applications, vol.34, issue.5, pp.739-763, 1993.
DOI : 10.1080/02726348508908143

J. Martin, F. Gander, F. Magoules, and . Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation, SIAM Journal on Scientific Computing, vol.24, issue.1, pp.38-60, 2002.

A. Bendali, Y. Boubendir, and M. Fares, A FETI-like domain decomposition method for coupling finite elements and boundary elements in large-size problems of acoustic scattering, Computers & Structures, vol.85, issue.9, pp.526-535, 2007.
DOI : 10.1016/j.compstruc.2006.08.029

Y. Boubendir, An analysis of the BEM-FEM non-overlapping domain decomposition method for a scattering problem, Journal of Computational and Applied Mathematics, vol.204, issue.2, pp.282-291, 2007.
DOI : 10.1016/j.cam.2006.02.044

M. Ovidio, C. Bucci, C. Gennarelli, and . Savarese, Representation of electromagnetic fields over arbitrary surfaces by a finite and nonredundant number of samples, IEEE Transactions on Antennas and Propagation, vol.46, issue.3, pp.351-359, 1998.

A. Jürgen-de-zaeytijd, J. Franchois, and . Geffrin, A New Value Picking Regularization Strategy&#x2014;Application to the 3-D Electromagnetic Inverse Scattering Problem, IEEE Transactions on Antennas and Propagation, vol.57, issue.4, pp.1133-1149, 2009.
DOI : 10.1109/TAP.2009.2015823

A. Litman, D. Lesselier, and F. Santosa, Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set, Inverse Problems, vol.14, issue.3, p.685, 1998.
DOI : 10.1088/0266-5611/14/3/018

URL : https://hal.archives-ouvertes.fr/hal-00438279

A. Litman, -ary scattering obstacles, Inverse Problems, vol.21, issue.6, p.131, 2005.
DOI : 10.1088/0266-5611/21/6/S10

URL : https://hal.archives-ouvertes.fr/hal-00857572