C. Arcelli and G. Sanniti-di-baja, Finding local maxima in a pseudo-euclidean distance transform, Computer Vision, Graphics, and Image Processing, vol.43, issue.1, pp.361-367, 1988.
DOI : 10.1016/0734-189X(88)90055-2

C. Arcelli and M. Frucci, Reversible skeletonization by (5-7-11)-erosion, Visual Form Analysis and Recognition, pp.21-28, 1992.
DOI : 10.1007/978-1-4899-0715-8_3

H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H. C. Wolf, Parametric correspondence and chamfer matching: two new techniques for image matching, proc. 5 th Int. Joint Conf. on Artif. Intell, pp.659-663, 1977.

A. L. Beckers, A. W. Smeuldersblu67-]-h, and . Blum, The probability of a random straight line in two and three dimensions, Models for the Perception of Speech and Visual Form, pp.233-240, 1967.
DOI : 10.1016/0167-8655(90)90061-6

G. Borgefors, Distance transformations in arbitrary dimensions Computer Vision , Graphics and Image Processing, pp.321-345, 1984.
DOI : 10.1016/0734-189x(84)90035-5

G. Borgefors, Distance transformations in digital images Computer Vision, Graphics and Image Processing, pp.344-371, 1986.

G. Borgefors, Another comment on ???a note on ???distance transformations in digital images??????, Computer Vision, Graphics and Image Processing, pp.301-306, 1991.
DOI : 10.1016/1049-9660(91)90070-6

G. Borgefors, I. Ragnemalm, and G. Sanniti-di-baja, The Euclidean Distance Transform : finding the local maxima and reconstructing the shape, 7 th Scandinavian Conf. on Image Analysis, pp.974-981, 1991.

G. Borgefors, Centres of maximal disks in the 5-7-11 distance transform, 8 th Scandinavian Conf. on Image Analysis, pp.105-111, 1993.

G. Borgefors, On Digital Distance Transforms in Three Dimensions, Computer Vision and Image Understanding, vol.64, issue.3, pp.368-376, 1996.
DOI : 10.1006/cviu.1996.0065

G. Borgefors and I. Nyström, Efficient shape representation by minimizing the set of centres of maximal discs/spheres, Pattern Recognition Letters, vol.18, issue.5, pp.465-472, 1997.
DOI : 10.1016/S0167-8655(97)00027-5

G. Borgefors, Some weighted distance transforms in four dimensions In 9 th Discrete Geometry for Computer Image, volume 1953 of Lectures Notes in Computer Science, pp.325-336, 2000.

?. Bibliographie-[-bor01, ]. G. Borgefors, and S. Svensson, Optimal local distances for distance transforms in 3D using an extended neighbourhood, 9 th Discrete Geometry for Computer Image, pp.113-122, 2001.

D. J. Grabiner, Farey nets and multidimensional continued fractions, Monatshefte f??r Mathematik, vol.13, issue.1, pp.35-60, 1992.
DOI : 10.1007/BF01572079

G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Bulletin of the American Mathematical Society, vol.35, issue.6, 1978.
DOI : 10.1090/S0002-9904-1929-04793-1

]. J. Hil69, D. Hilditch, and . Rutovitz, Chromosome recognition. Ann, New York Acad. Sci, vol.157, pp.339-364, 1969.

M. Hujter and B. Vizvari, The exact solutions to the Frobenius problem with three variables, Ramanujan Math. Soc, vol.2, issue.2, pp.117-143, 1987.

]. C. Kis96 and . Kiselman, Regularity properties of distance transformations in image analysis, Computer Vision and Image Understanding, vol.64, issue.3, pp.390-398, 1996.

J. L. Mari and J. Sequeira, Using implicit surfaces to characterize shapes within digital volumes, RECPAD'00, pp.285-289, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01499727

J. L. Mari, L. Astart, and J. Sequeira, Geometrical Modeling of the Heart and Its Main Vessels, First International Workshop on Funcional Imaging and Modeling of the Heart, 2001.
DOI : 10.1007/3-540-45572-8_2

URL : https://hal.archives-ouvertes.fr/hal-01499726

U. Montanari, A Method for Obtaining Skeletons Using a Quasi-Euclidean Distance, Journal of the ACM, vol.15, issue.4, pp.600-624, 1968.
DOI : 10.1145/321479.321486

A. Montanvert and Y. Usson, Discrete distances applied to 2D granulometry and to 3D reconstruction, Proc. of the 8 th Scandinavian Conf. on Image Analysis, pp.1153-1160, 1993.

J. Mukherjee, M. A. Kumar, B. N. Chatterji, and P. P. Das, Discrete shading of three-dimensional objects from medial axis transform, Pattern Recognition Letters, vol.20, issue.14, pp.1533-1544, 1999.
DOI : 10.1016/S0167-8655(99)00122-1

J. Mukherjee, M. A. Kumar, P. P. Das, and B. N. Chatterji, Fast computation of cross-sections of 3D objects from their Medial Axis Transforms, Pattern Recognition Letters, vol.21, issue.6-7, pp.605-613, 2000.
DOI : 10.1016/S0167-8655(00)00025-8

P. F. Nacken, Image analysis methods based on hierarchies of graphs and multiscale mathematical morphology, Unknown school), 1994.

]. J. Pfa67, A. Pfaltz, and . Rosenfeld, Computer representation of planar regions by their skeletons, Comm. of ACM, vol.10, pp.119-125, 1967.

]. E. Rem99, E. Remy, and . Thiel, Triangulations des boules de chanfrein, 12èmes12èmes journées de l'AFIG, pp.126-135, 1999.

E. Remy and E. Thiel, Computing 3D medial axis for chamfer distances In 9 th DGCI, Discrete Geometry for Computer Image, volume 1953 of Lectures Notes in Computer Science, pp.418-430, 2000.

?. Bibliographie, E. Remy, and . Thiel, Optimizing 3D chamfer masks with norm constraints, Int. Workshop on Combinatorial Image Analysis, pp.39-56, 2000.

]. E. Rem00c, E. Remy, and . Thiel, Structures dans les sphères de chanfrein, 12ème12ème RFIA, Rec. des Formes et I.A, pp.483-492, 2000.

E. Remy and E. Thiel, Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D, Pattern Recognition Letters, vol.23, issue.6, pp.649-661, 2001.
DOI : 10.1016/S0167-8655(01)00141-6

URL : https://hal.archives-ouvertes.fr/hal-01494689

]. A. Ros66, J. L. Rosenfeld, and . Pfaltz, Sequential operations in digital picture processing, Journal of ACM, vol.13, issue.4, pp.471-494, 1966.

A. Rosenfeld and J. L. Pfaltz, Distance functions on digital pictures, Pattern Recognition, vol.1, issue.1, pp.33-61, 1968.
DOI : 10.1016/0031-3203(68)90013-7

]. T. Sai94, J. I. Saito, and . Toriwaki, New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications, Pattern Recognition, vol.27, issue.11, pp.1551-1565, 1994.

G. Sanniti-di-baja and E. Thiel, Skeletonization algorithm running on path-based distance maps, Image and Vision Computing, vol.14, issue.1, pp.47-57, 1996.
DOI : 10.1016/0262-8856(95)01039-4

]. J. Syl84 and . Sylvester, Mathematicals questions with their solutions, Educational Times, vol.41, p.21, 1884.

]. E. Thi94 and . Thiel, Les distances de chanfrein en analyse d'images : fondements et applications, 1994.

J. H. Verwer, Distance transforms: metrics, algorithms and applications, 1991.

J. H. Verwer, Local distances for distance transformations in two and three dimensions, Pattern Recognition Letters, vol.12, issue.11, pp.671-682, 1991.
DOI : 10.1016/0167-8655(91)90004-6

]. A. Vos88 and . Vossepoel, A note on Distance transformations in digital images, Computer Vision, Graphics and Image Processing, vol.43, pp.88-97, 1988.

. Dans-undeuxì-eme-temps, une forme, qui est l'ensemble des centres des boules maximales inscrites dans cette forme Nous détaillons son calcuì a partir de la carte de distance de la forme, par la méthode des tables de correspondance. Nous présentons une méthode de détermination des valeurs de cette table pour toute distance discrète en 2D ou 3D, puis nous présentons une méthode permettant de calculer, ainsi que de valider le voisinage de test, dont dépend le calcul local de l'axe médian, Nous donnons enfin plusieurs exemples de tables et de voisinages obtenus dans le cas des normes de chanfrein 3D, ainsi que dans celui du carré de la distance euclidienne