. Ajayi-obe, Reduced development of cerebral cortex in extremely preterm infants. The Lancet, pp.3561162-1163, 2000.

G. Allaire, Analyse numérique et optimisation : Une introductionàintroductionà la modélisation mathématique etàetà la simulation numérique, 2005.

. Amunts, BigBrain: An Ultrahigh-Resolution 3D Human Brain Model, Science, vol.35, issue.12, pp.3401472-1475, 2013.
DOI : 10.1016/j.tins.2012.09.005

. Atkins, A Spectral Algorithm for Seriation and the Consecutive Ones Problem, SIAM Journal on Computing, vol.28, issue.1, pp.297-310, 1998.
DOI : 10.1137/S0097539795285771

A. , K. Aubert, G. Kornprobst, and P. , Mathematical problems in image processing : partial differential equations and the calculus of variations, 2006.

. Auzias, Deep sulcal landmarks: Algorithmic and conceptual improvements in the definition and extraction of sulcal pits, NeuroImage, vol.111, pp.12-25, 2015.
DOI : 10.1016/j.neuroimage.2015.02.008

. Auzias, : A cortical parcellation atlas for functional mapping, Human Brain Mapping, vol.111, issue.Suppl 1, 2016.
DOI : 10.1016/j.neuroimage.2013.08.068

. Auzias, Model-driven parameterization of fetal cortical surfaces, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp.1260-1263, 2015.
DOI : 10.1109/ISBI.2015.7164103

URL : https://hal.archives-ouvertes.fr/hal-01114993

. Auzias, Model-Driven Harmonic Parameterization of the Cortical Surface, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2011, pp.310-317, 2011.
DOI : 10.1002/(SICI)1097-0193(1999)8:4<272::AID-HBM10>3.0.CO;2-4

. Auzias, Model-Driven Harmonic Parameterization of the Cortical Surface: HIP-HOP, IEEE Transactions on Medical Imaging, vol.32, issue.5, pp.873-887, 2013.
DOI : 10.1109/TMI.2013.2241651

. Awate, 3D Cerebral Cortical Morphometry in Autism: Increased Folding in Children and Adolescents in Frontal, Parietal, and Temporal Lobes, pp.559-567, 2008.
DOI : 10.1007/978-3-540-85988-8_67

B. Banuelos, R. Banuelos, and K. Burdzy, On the ???Hot Spots??? Conjecture of J. Rauch, Journal of Functional Analysis, vol.164, issue.1, pp.1-33, 1999.
DOI : 10.1006/jfan.1999.3397

. Barkovich, A developmental and genetic classification for malformations of cortical development: update 2012, Brain, vol.135, issue.5, pp.1351348-1369, 2012.
DOI : 10.1093/brain/aws019

. Barkovich, . Norman, A. J. Barkovich, and D. Norman, Anomalies of the corpus callosum: correlation with further anomalies of the brain, American Journal of Roentgenology, vol.151, issue.1, pp.493-501, 1988.
DOI : 10.2214/ajr.151.1.171

. Barrass, Mode Transitions in a Model Reaction???Diffusion System Driven by Domain Growth and Noise, Bulletin of Mathematical Biology, vol.282, issue.6336, pp.68981-995, 2006.
DOI : 10.1007/s11538-006-9106-8

. Barreira, The surface finite element method for pattern formation on evolving biological surfaces, Journal of Mathematical Biology, vol.237, issue.4, pp.631095-1119, 2011.
DOI : 10.1007/s00285-011-0401-0

D. Barron, An experimental analysis of some factors involved in the development of the fissure pattern of the cerebral cortex, Journal of Experimental Zoology, vol.95, issue.3, 1950.
DOI : 10.1002/jez.1401130304

J. Bates, The embedding dimension of Laplacian eigenfunction maps, Applied and Computational Harmonic Analysis, vol.37, issue.3, pp.516-530, 2014.
DOI : 10.1016/j.acha.2014.03.002

. Bauer, Optical Flow on Moving Manifolds, SIAM Journal on Imaging Sciences, vol.8, issue.1, pp.484-512, 2015.
DOI : 10.1137/140965235

URL : http://arxiv.org/abs/1404.3885

. Bauer, Developmental Origin of Patchy Axonal Connectivity in the Neocortex: A Computational Model, Cerebral Cortex, vol.24, issue.2, pp.487-500, 2014.
DOI : 10.1093/cercor/bhs327

. Bayly, Mechanical forces in cerebral cortical folding: A review of measurements and models, Journal of the Mechanical Behavior of Biomedical Materials, vol.29, pp.568-581, 2014.
DOI : 10.1016/j.jmbbm.2013.02.018

. Beg, Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms, International Journal of Computer Vision, vol.61, issue.2, pp.61139-157, 2005.
DOI : 10.1023/B:VISI.0000043755.93987.aa

M. Belkin and P. Niyogi, Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Computation, vol.15, issue.6, pp.1373-1396, 2003.
DOI : 10.1126/science.290.5500.2319

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Belkin, M. Belkin, and P. Niyogi, Towards a theoretical foundation for laplacian-based manifold methods, Journal of Computer and System Sciences, issue.8, pp.741289-1308, 2008.

P. Bérard, Volume des ensembles nodaux des fonctions propres du laplacien, S??minaire de th??orie spectrale et g??om??trie, vol.3, pp.1-9, 1984.
DOI : 10.5802/tsg.17

. Bonito, . Glowinski, A. Bonito, and R. Glowinski, On the nodal set of the eigenfunctions of the Laplace-Beltrami operator for bounded surfaces in $R^3$: A computational approach, Communications on Pure and Applied Analysis, vol.13, issue.5, pp.2115-2126, 2014.
DOI : 10.3934/cpaa.2014.13.2115

G. Borg, Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe: Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Mathematica, vol.78, issue.0, pp.1-96, 1946.
DOI : 10.1007/BF02421600

. Brun, Localized Misfolding Within Broca???s Area as a Distinctive Feature of Autistic Disorder, Biological Psychiatry : Cognitive Neuroscience and Neuroimaging, p.pages ?, 2015.
DOI : 10.1016/j.bpsc.2015.11.003

. Budday, Physical biology of human brain development, Frontiers in Cellular Neuroscience, vol.9, 2015.
DOI : 10.3389/fncel.2015.00257

. Cachia, A primal sketch of the cortex mean curvature: A morphogenesis based approach to study the variability of the folding patterns, IEEE transactions on medical imaging, pp.754-765, 2003.
DOI : 10.1109/TMI.2003.814781

. Cachier, Iconic feature based nonrigid registration: the PASHA algorithm, Computer Vision and Image Understanding, vol.89, issue.2-3, pp.272-298, 2003.
DOI : 10.1016/S1077-3142(03)00002-X

URL : https://hal.archives-ouvertes.fr/inria-00615633

J. Cartwright, Labyrinthine Turing Pattern Formation in the Cerebral Cortex, Journal of Theoretical Biology, vol.217, issue.1, pp.97-103, 2002.
DOI : 10.1006/jtbi.2002.3012

. Castro, A survey of partial differential equations in geometric design. The Visual Computer, pp.213-225, 2008.

B. Chazelle, Natural algorithms and influence systems, Communications of the ACM, vol.55, issue.12, pp.101-110, 2012.
DOI : 10.1145/2380656.2380679

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Cherniak, Component placement optimization in the brain, The Journal of neuroscience, vol.14, issue.4, pp.2418-2427, 1994.

. Chi, Gyral development of the human brain, Annals of Neurology, vol.161, issue.1, pp.86-93, 1977.
DOI : 10.1002/ana.410010109

. Chopp, . Sethian, D. L. Chopp, and J. A. Sethian, Flow under Curvature: Singularity Formation, Minimal Surfaces, and Geodesics, Experimental Mathematics, vol.102, issue.4, pp.235-255, 1993.
DOI : 10.1080/10586458.1993.10504566

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

. Clouchoux, Quantitative in vivo MRI measurement of cortical development in the fetus, Brain Structure and Function, vol.179, issue.2, pp.127-139, 2012.
DOI : 10.1007/s00429-011-0325-x

URL : https://hal.archives-ouvertes.fr/hal-01341024

. Coifman, R. R. Maggioni-]-coifman, and M. Maggioni, Diffusion wavelets, Applied and Computational Harmonic Analysis, vol.21, issue.1, pp.53-94, 2006.
DOI : 10.1016/j.acha.2006.04.004

URL : http://doi.org/10.1016/j.acha.2006.04.004

. Coulon, Atlas-based clustering of sulcal patterns &#x2014; Application to the left inferior frontal sulcus, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.426-429, 2012.
DOI : 10.1109/ISBI.2012.6235575

. Coulon, Quasi-isometric length parameterization of cortical sulci: Application to handedness and the central sulcus morphology, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp.1268-1271, 2015.
DOI : 10.1109/ISBI.2015.7164105

. Daubechies, Wavelets on irregular point sets, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.357, issue.1760, pp.3572397-2413, 1760.
DOI : 10.1098/rsta.1999.0439

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Romero, Discrete domains of gene expression in germinal layers distinguish the development of gyrencephaly, 2015.

. Desikan, An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, NeuroImage, vol.31, issue.3, pp.31968-980, 2006.
DOI : 10.1016/j.neuroimage.2006.01.021

. Destrieux, Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature, NeuroImage, vol.53, issue.1, pp.1-15, 2010.
DOI : 10.1016/j.neuroimage.2010.06.010

R. Doursat, Organically Grown Architectures: Creating Decentralized, Autonomous Systems by Embryomorphic Engineering, Organic computing, pp.167-199, 2008.
DOI : 10.1007/978-3-540-77657-4_8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Drap, P. Drap, and J. Lefèvre, An Exact Formula for Calculating Inverse Radial Lens Distortions, Sensors, vol.16, issue.6, p.16807, 2016.
DOI : 10.1007/s10851-009-0153-2

URL : https://hal.archives-ouvertes.fr/hal-01458821

. Dubois, Mapping the Early Cortical Folding Process in the Preterm Newborn Brain, Cerebral Cortex, vol.18, issue.6, pp.1444-1454, 2008.
DOI : 10.1093/cercor/bhm180

. Dubois, Exploring the successive waves of cortical folding in the developing brain using MRI and spectral analysis of gyrification, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), p.page in press, 2016.
DOI : 10.1109/ISBI.2016.7493259

URL : https://hal.archives-ouvertes.fr/hal-01464148

. Durrleman, Toward a Comprehensive Framework for the Spatiotemporal Statistical Analysis of Longitudinal Shape Data, International Journal of Computer Vision, vol.31, issue.3, pp.22-59, 2013.
DOI : 10.1007/s11263-012-0592-x

URL : https://hal.archives-ouvertes.fr/hal-00813825

E. Dziuk, G. Dziuk, and C. Elliott, Finite elements on evolving surfaces, IMA Journal of Numerical Analysis, vol.27, issue.2, p.262, 2007.
DOI : 10.1093/imanum/drl023

S. Escher, J. Escher, and G. Simonett, The volume preserving mean curvature flow near spheres, pp.2789-2796, 1998.

L. C. Evans, The fiedler rose : On the extreme points of the fiedler vector. arXiv preprint arXiv :1112.6323. [Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czechoslovak Mathematical Journal, vol.25, issue.4, pp.619-633, 1975.

. Fischl, Cortical Folding Patterns and Predicting Cytoarchitecture, Cerebral Cortex, vol.18, issue.8, pp.181973-80, 2007.
DOI : 10.1093/cercor/bhm225

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474454

O. Foubet and R. Toro, Mechanical morphogenesis and the development of neocortical organisation. bioRxiv, p.21311, 2015.

. Gao, A compact shape descriptor for triangular surface meshes, Computer-Aided Design, vol.53, pp.62-69, 2014.
DOI : 10.1016/j.cad.2014.03.008

. Garzón-alvarado, A model of cerebral cortex formation during fetal development using reaction?diffusion?convection equations with turing space parameters. Computer methods and programs in biomedicine, pp.489-497, 2011.

. Gelbaum, . Titus, Z. Gelbaum, and M. Titus, Simulation of fractional brownian surfaces via spectral synthesis on manifolds. arXiv preprint, 2013.

. Geng, Biomechanisms for modelling cerebral cortical folding, Medical Image Analysis, vol.13, issue.6, pp.920-930, 2009.
DOI : 10.1016/j.media.2008.12.005

. Germanaud, Simplified gyral pattern in severe developmental microcephalies? New insights from allometric modeling for spatial and spectral analysis of gyrification, NeuroImage, vol.102, pp.317-331, 2014.
DOI : 10.1016/j.neuroimage.2014.07.057

. Germanaud, Larger is twistier: Spectral analysis of gyrification (SPANGY) applied to adult brain size polymorphism, NeuroImage, vol.63, issue.3, pp.631257-1272, 2012.
DOI : 10.1016/j.neuroimage.2012.07.053

. Giedd, . Rapoport, J. N. Giedd, and J. L. Rapoport, Structural MRI of Pediatric Brain Development: What Have We Learned and Where Are We Going?, Neuron, vol.67, issue.5, pp.728-762, 2010.
DOI : 10.1016/j.neuron.2010.08.040

. Gordon, One Cannot Hear the Shape of a Drum, Bulletin of the American Mathematical Society, vol.27, issue.1, pp.134-138, 1992.
DOI : 10.1090/S0273-0979-1992-00289-6

H. Götz and W. B. Huttner, The cell biology of neurogenesis, Nature Reviews Molecular Cell Biology, vol.16, issue.10, pp.777-788, 2005.
DOI : 10.1523/JNEUROSCI.0778-05.2005

. Gratiolet and L. P. Gratiolet, Mémoire sur les plis cérébraux de l'homme et des primatès : Mit einem Atlas (4 pp. XIV pl, 1854.

. Grenander, A Pattern-Theoretic Characterization of Biological Growth, IEEE Transactions on Medical Imaging, vol.26, issue.5, pp.648-659, 2007.
DOI : 10.1109/TMI.2006.891500

. Habas, A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation, NeuroImage, vol.53, issue.2, pp.53460-470, 2010.
DOI : 10.1016/j.neuroimage.2010.06.054

. Hammond, Wavelets on graphs via spectral graph theory, Applied and Computational Harmonic Analysis, vol.30, issue.2, pp.129-150, 2011.
DOI : 10.1016/j.acha.2010.04.005

URL : https://hal.archives-ouvertes.fr/inria-00541855

C. C. Hilgetag and H. Barbas, Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex, PLoS Computational Biology, vol.13, issue.3, p.22, 2006.
DOI : 10.1371/journal.pcbi.0020022.sg003

H. Holloway, D. Holloway, and L. Harrison, Pattern Selection in Plants: Coupling Chemical Dynamics to Surface Growth in Three Dimensions, Annals of Botany, vol.102, issue.1, p.361, 2008.
DOI : 10.1093/aob/mcn088

G. Huisken, Flow by mean curvature of convex surfaces into spheres, Journal of Differential Geometry, vol.20, issue.1, pp.237-266, 1984.
DOI : 10.4310/jdg/1214438998

. Im, Spatial Distribution of Deep Sulcal Landmarks and Hemispherical Asymmetry on the Cortical Surface, Cerebral Cortex, vol.20, issue.3, 2009.
DOI : 10.1093/cercor/bhp127

. Izaguirre, COMPUCELL, a multi-model framework for simulation of morphogenesis, Bioinformatics, vol.20, issue.7, pp.201129-1137, 2004.
DOI : 10.1093/bioinformatics/bth050

M. Kac, Can One Hear the Shape of a Drum?, The American Mathematical Monthly, vol.73, issue.4, pp.1-23, 1966.
DOI : 10.2307/2313748

. Kelava, The secondary loss of gyrencephaly as an example of evolutionary phenotypical reversal, Frontiers in Neuroanatomy, vol.7, 2013.
DOI : 10.3389/fnana.2013.00016

. Khan, Feature detection and tracking in optical flow on non-flat manifolds, Pattern Recognition Letters, vol.32, issue.15, pp.322047-2052, 2011.
DOI : 10.1016/j.patrec.2011.09.017

. Kirisits, Optical Flow on Evolving Surfaces with Space and Time Regularisation, Journal of Mathematical Imaging and Vision, vol.14, issue.4, pp.55-70, 2015.
DOI : 10.1007/s10851-014-0513-4

URL : http://arxiv.org/abs/1310.0322

S. Klainerman, PDE as a Unified Subject, Visions in Mathematics, pp.279-315, 2010.
DOI : 10.1007/978-3-0346-0422-2_10

. Koenderink, J. J. Van-doorn-]-koenderink, and A. J. Van-doorn, Surface shape and curvature scales, Image and Vision Computing, vol.10, issue.8, pp.557-564, 1992.
DOI : 10.1016/0262-8856(92)90076-F

. Kriegstein, Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion, Nature Reviews Neuroscience, vol.13, issue.11, pp.883-890, 2006.
DOI : 10.1038/340471a0

. Laplace-beltrami-nodal and . Counts, A new signature for 3d shape analysis, IEEE International Symposium on Biomedical Imaging : From Nano to Macro, ISBI'09, pp.694-697

M. Lampl, Evidence of saltatory growth in infancy, American Journal of Human Biology, vol.254, issue.6, pp.641-652, 1993.
DOI : 10.1002/ajhb.1310050607

[. Goualher, Statistical Sulcal Shape Comparisons: Application to the Detection of Genetic Encoding of the Central Sulcus Shape, NeuroImage, vol.11, issue.5, pp.11564-574, 2000.
DOI : 10.1006/nimg.2000.0559

[. Clark and W. , Deformation patterns in the cerebral cortex, Essays on Growth and Form, pp.1-22, 1945.

[. Troter, An interactive sulcal fundi editor in brainvisa, 17th International Conference on Human Brain Mapping, Organization for Human Brain Mapping, 2011.

J. Lefevre, Fiedler vectors and elongation of graphs : A threshold phenomenon on a particular class of trees. arXiv preprint, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00723888

. Lefèvre, . Auzias, J. Lefèvre, and G. Auzias, Spherical Parameterization for Genus Zero Surfaces Using Laplace-Beltrami Eigenfunctions, Geometric Science of Information, pp.121-129, 2015.
DOI : 10.1007/978-3-319-25040-3_14

. Lefevre, Brain Lobes Revealed by Spectral Clustering, 2014 22nd International Conference on Pattern Recognition, pp.562-567, 2014.
DOI : 10.1109/ICPR.2014.107

B. Lefevre, J. Lefevre, and S. Baillet, Optical Flow and Advection on 2-Riemannian Manifolds: A Common Framework, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.6, pp.1081-1092, 2008.
DOI : 10.1109/TPAMI.2008.51

B. Lefevre, J. Lefevre, and S. Baillet, Estimation of Velocity Fields and Propagation on Non-Euclidian Domains: Application to the Exploration of Cortical Spatiotemporal Dynamics, Mathematical Modeling in Biomedical Imaging I, pp.203-226, 2009.
DOI : 10.1007/978-3-642-03444-2_5

. Lefèvre, Are developmental trajectories of cortical folding comparable between cross-sectional datasets of fetuses and preterm newborns ? Cerebral Cortex, p.123, 2015.

. Lefèvre, Fast surface-based measurements using first eigenfunction of the Laplace-Beltrami Operator: Interest for sulcal description, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), 2012.
DOI : 10.1109/ISBI.2012.6235863

. Lefevre, Surface Smoothing: A Way Back in Early Brain Morphogenesis, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2013, pp.590-597, 2013.
DOI : 10.1007/978-3-642-40811-3_74

URL : https://hal.archives-ouvertes.fr/inserm-00944650

. Lefèvre, Identification of Growth Seeds in the Neonate Brain through Surfacic Helmholtz Decomposition, Information Processing in Medical Imaging, pp.252-263, 2009.
DOI : 10.1007/978-3-540-75759-7_16

J. Lefèvre and J. Mangin, A Reaction-Diffusion Model of Human Brain Development, PLoS Computational Biology, vol.1, issue.4, p.1000749, 2010.
DOI : 10.1371/journal.pcbi.1000749.g009

B. Lévy, Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06), pp.13-13, 2006.
DOI : 10.1109/SMI.2006.21

. Lewitus, Conical expansion of the outer subventricular zone and the role of neocortical folding in evolution and development An adaptive threshold in mammalian neocortical evolution, Frontiers in human neuroscience PLoS Biology, vol.7, issue.11, p.12, 2013.

Z. Liu, R. Liu, and H. Zhang, Segmentation of 3d meshes through spectral clustering, Computer Graphics and Applications PG 2004. Proceedings. 12th Pacific Conference on, pp.298-305, 2004.

. Lohmann, Sulcal Variability of Twins, Cerebral Cortex, vol.9, issue.7, pp.754-763, 1999.
DOI : 10.1093/cercor/9.7.754

. Lombaert, Spectral Log-Demons: Diffeomorphic Image Registration with Very Large Deformations, International Journal of Computer Vision, vol.14, issue.4, pp.254-271, 2014.
DOI : 10.1007/s11263-013-0681-5

URL : https://hal.archives-ouvertes.fr/hal-00979616

. Lombaert, Fast Brain Matching with Spectral Correspondence, Information Processing in Medical Imaging, pp.660-673, 2011.
DOI : 10.1007/978-3-642-22092-0_54

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

. Lorenzi, Regional flux analysis for discovering and quantifying anatomical changes: An application to the brain morphometry in Alzheimer's disease, NeuroImage, vol.115, pp.224-234, 2015.
DOI : 10.1016/j.neuroimage.2015.04.051

. Lui, Development and Evolution of the Human Neocortex, Cell, vol.146, issue.1, pp.18-36, 2011.
DOI : 10.1016/j.cell.2011.06.030

. Madzvamuse, Stability analysis and simulations of coupled bulk-surface reaction-diffusion systems, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.33, issue.1-2, p.20140546, 2015.
DOI : 10.1007/s00285-011-0404-x

R. Mcgough, J. Mcgough, and K. Riley, Pattern formation in the Gray???Scott model, Nonlinear Analysis: Real World Applications, vol.5, issue.1, pp.105-121, 2004.
DOI : 10.1016/S1468-1218(03)00020-8

B. Mota and S. Herculano-houzel, Cortical folding scales universally with surface area and thickness, not number of neurons, Science, vol.335, issue.6076, pp.34974-77, 2015.
DOI : 10.1126/science.1215280

J. Munkres, Algorithms for the Assignment and Transportation Problems, Journal of the Society for Industrial and Applied Mathematics, vol.5, issue.1, pp.32-38, 1957.
DOI : 10.1137/0105003

. Murray, Mathematical Biology II : Spatial Models and Biomedical Applications, 2003.

. Ng, On spectral clustering : Analysis and an algorithm Advances in neural information processing systems, pp.849-856, 2002.

. Nie, A computational model of cerebral cortex folding, Journal of Theoretical Biology, vol.264, issue.2, pp.467-478, 2010.
DOI : 10.1016/j.jtbi.2010.02.002

. Niethammer, Global Medical Shape Analysis Using the Laplace-Beltrami Spectrum, Proceedings of MICCAI, pp.850-857, 2007.
DOI : 10.1007/978-3-540-75757-3_103

. Ochiai, Sulcal pattern and morphology of the superior temporal sulcus, NeuroImage, vol.22, issue.2, pp.706-719, 2004.
DOI : 10.1016/j.neuroimage.2004.01.023

. Ono, Atlas of the cerebral sulci, 1990.

J. Pearson, Complex Patterns in a Simple System, Science, vol.261, issue.5118, pp.189-192, 1993.
DOI : 10.1126/science.261.5118.189

. Pepe, Spectral clustering based parcellation of FETAL brain MRI, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp.152-155, 2015.
DOI : 10.1109/ISBI.2015.7163838

URL : https://hal.archives-ouvertes.fr/hal-01114989

S. Pinasco, J. P. Pinasco, and C. Scarola, A nodal inverse problem for second order Sturm???Liouville operators with indefinite weights, Applied Mathematics and Computation, vol.256, pp.819-830, 2015.
DOI : 10.1016/j.amc.2015.01.101

. Pizzagalli, Local landmark alignment for high-resolution fMRI group studies: Toward a fine cortical investigation of hand movements in human, Journal of Neuroscience Methods, vol.218, issue.1, pp.83-95, 2013.
DOI : 10.1016/j.jneumeth.2013.05.005

URL : https://hal.archives-ouvertes.fr/inserm-00874380

. Plaza, The Effect of Growth and Curvature on Pattern Formation, Journal of Dynamics and Differential Equations, vol.60, issue.4, pp.1093-1121, 2004.
DOI : 10.1007/s10884-004-7834-8

S. Prothero, J. Prothero, and J. Sundsten, Folding of the Cerebral Cortex in Mammals, Brain, Behavior and Evolution, vol.24, issue.2-3, pp.152-167, 1984.
DOI : 10.1159/000121313

. Qiu, Smooth functional and structural maps on the neocortex via orthonormal bases of the laplace-beltrami operator, Medical Imaging IEEE Transactions on, issue.10, pp.251296-1306, 2006.

. Rabiei, The graph windowed fourier transform : a tool to quantify the gyrification of the cerebral cortex, Workshop on Spectral Analysis in Medical Imaging (SAMI), 2015.
URL : https://hal.archives-ouvertes.fr/hal-01224184

P. Rakic, Specification of cerebral cortical areas, Science, vol.241, issue.4862, pp.170-176, 1988.
DOI : 10.1126/science.3291116

. Régis, ???Sulcal Root??? Generic Model: a Hypothesis to Overcome the Variability of the Human Cortex Folding Patterns, Neurologia medico-chirurgica, vol.45, issue.1, pp.1-17, 2005.
DOI : 10.2176/nmc.45.1

. Reillo, A Role for Intermediate Radial Glia in the Tangential Expansion of the Mammalian Cerebral Cortex, Cerebral Cortex, vol.21, issue.7, pp.1674-1694, 2011.
DOI : 10.1093/cercor/bhq238

. Richman, Mechanical Model of Brain Convolutional Development, Science, issue.4196, pp.18918-18939, 1975.

F. Ronan, L. Ronan, and P. Fletcher, From genes to folds: a review of cortical gyrification theory, Brain Structure and Function, vol.36, issue.5, pp.2475-2483, 2015.
DOI : 10.1007/s00429-014-0961-z

S. Roth, Mathematics and biology: a Kantian view on the history of pattern formation theory, Development Genes and Evolution, vol.25, issue.Suppl, pp.5-6255, 2011.
DOI : 10.1007/s00427-011-0378-0

F. Rousseau, Méthodes d'analyse d'images pour l'anatomie numérique cérébrale, 2014.

. Rousseau, A Supervised Patch-Based Approach for Human Brain Labeling, IEEE Transactions on Medical Imaging, vol.30, issue.10, pp.301852-1862, 2011.
DOI : 10.1109/TMI.2011.2156806

URL : https://hal.archives-ouvertes.fr/hal-00631458

G. Sapiro and C. Schnörr, Geometric partial differential equations and image analysis Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class, Int. J. Computer Vision, vol.6, issue.1, pp.25-38, 1991.

. Serag, Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression, NeuroImage, vol.59, issue.3, pp.592255-2265, 2012.
DOI : 10.1016/j.neuroimage.2011.09.062

M. Shi, J. Shi, and J. Malik, Normalized cuts and image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.22, issue.8, pp.888-905, 2000.

. Shi, Cortical Shape Analysis in the Laplace-Beltrami Feature Space, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2009, pp.208-215, 2009.
DOI : 10.1007/978-3-642-04271-3_26

. Shuman, A windowed graph Fourier transform, 2012 IEEE Statistical Signal Processing Workshop (SSP), pp.133-136, 2012.
DOI : 10.1109/SSP.2012.6319640

S. Striedter, G. F. Striedter, and S. Srinivasan, Knowing when to fold them, Science, vol.241, issue.4862, pp.34931-34963, 2015.
DOI : 10.1126/science.3291116

. Striedter, Cortical folding : When, where, how, and why ? Annual review of neuroscience, 2015.

D. Striegel and M. Hurdal, Chemically Based Mathematical Model for Development of Cerebral Cortical Folding Patterns, PLoS Computational Biology, vol.63, issue.9, 2009.
DOI : 10.1371/journal.pcbi.1000524.g005

. Sun, A concise and provably informative multi-scale signature based on heat diffusion Growth and folding of the mammalian cerebral cortex : from molecules to malformations, Computer graphics forum Wiley Online Library. [Sun and Hevner, pp.1383-1392217, 2009.

. Sun, Constructing a dictionary of human brain folding patterns . Medical Image Computing and Computer-Assisted Intervention? MICCAI, pp.117-124, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00776671

. Sun, Linking morphological and functional variability in hand movement and silent reading, Brain Structure and Function, vol.518, issue.Pt 1, pp.1-11, 2015.
DOI : 10.1101/021311

. Sun, The effect of handedness on the shape of the central sulcus, NeuroImage, vol.60, issue.1, pp.332-339, 2012.
DOI : 10.1016/j.neuroimage.2011.12.050

. Tallinen, Gyrification from constrained cortical expansion, Proceedings of the National Academy of Sciences, pp.11112667-12672, 2014.
DOI : 10.1021/ac0346712

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4156754

. Tallinen, On the growth and form of cortical??convolutions, Nature Physics, vol.170, issue.6, 2016.
DOI : 10.1038/nphys3632

URL : https://hal.archives-ouvertes.fr/hal-01342578

. Tarrant, Microcephaly: a radiological review, Pediatric Radiology, vol.6, issue.Suppl 1, pp.39772-780, 2009.
DOI : 10.1007/s00247-009-1266-x

G. Toole and M. K. Hurdal, Growth in a Turing Model of Cortical Folding, BIOMATH, vol.1, issue.1, p.Article?ID, 2012.
DOI : 10.11145/j.biomath.2012.09.252

R. Toro, On the Possible Shapes of the Brain, Evolutionary Biology, vol.179, issue.10, pp.600-612, 2012.
DOI : 10.1007/s11692-012-9201-8

B. Toro, R. Toro, and Y. Burnod, A Morphogenetic Model for the Development of Cortical Convolutions, Cerebral Cortex, vol.15, issue.12, pp.1900-1913, 2005.
DOI : 10.1093/cercor/bhi068

. Toro, Brain Size and Folding of the Human Cerebral Cortex, Cerebral Cortex, vol.18, issue.10, p.182352, 2008.
DOI : 10.1093/cercor/bhm261

A. M. Turing, The chemical basis of morphogenesis, Philosophical Transactions of the Royal Society of London B : Biological Sciences, pp.37-72, 1952.

D. Van-essen, A tension-based theory of morphogenesis and compact wiring in the central nervous system, Nature, vol.385, issue.6614, pp.385313-385321, 1997.
DOI : 10.1038/385313a0

U. Von-luxburg-]-von-luxburg, A tutorial on spectral clustering, Statistics and Computing, vol.21, issue.1, pp.395-416, 2007.
DOI : 10.1007/s11222-007-9033-z

. Wachinger, BrainPrint: A discriminative characterization of brain morphology, NeuroImage, vol.109, pp.232-248, 2015.
DOI : 10.1016/j.neuroimage.2015.01.032

. Wazaefi, Consensus clustering from experts' partitions for patients' nevi : Model the ugly duckling, Proceedings of the International Conference on Data Mining (DMIN), page 1. The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing, 2012.

. Wazaefi, Learning from examples to automatically cluster pigmented skin lesions, 2013 IEEE 10th International Symposium on Biomedical Imaging, pp.153-156, 2013.
DOI : 10.1109/ISBI.2013.6556435

G. Xu, Discrete Laplace???Beltrami operators and their convergence, Computer Aided Geometric Design, vol.21, issue.8, pp.767-784, 2004.
DOI : 10.1016/j.cagd.2004.07.007

. Xu, Axons Pull on the Brain, But Tension Does Not Drive Cortical Folding, Journal of Biomechanical Engineering, vol.132, issue.7, p.71013, 2010.
DOI : 10.1115/1.4001683

. Xun, Parameter Estimation of Partial Differential Equation Models, Journal of the American Statistical Association, vol.17, issue.503, pp.1009-1020, 2013.
DOI : 10.1198/016214502388618861

L. Zhang, H. Zhang, and R. Liu, Mesh segmentation via recursive and visually salient spectral cuts, Proc. of vision, modeling, and visualization, pp.429-436, 2005.

. Zhang, Spectral Mesh Processing, Computer graphics forum, pp.1865-1894, 2010.
DOI : 10.1111/j.1467-8659.2010.01655.x

K. Zilles and K. Amunts, Centenary of Brodmann's map ??? conception and fate, Nature Reviews Neuroscience, vol.12, issue.2, pp.139-145, 2010.
DOI : 10.1038/nrn2776

. Zilles, Development of cortical folding during evolution and ontogeny, Trends in Neurosciences, vol.36, issue.5, pp.275-284, 2013.
DOI : 10.1016/j.tins.2013.01.006