T. D. Pollard and W. C. Earnshaw, Cell Biology, 2004.

F. Rey and W. I. Sundquist, Macromolecular assemblages, vol.21, pp.221-223, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00590792

M. Mueller, S. Jenni, and N. Ban, Strategies for crystallization and structure determination of very large macromolecular assemblies, Curr. Opin. Struct. Biol, vol.17, pp.572-581, 2007.

N. Ban and E. H. Egelman, Structure and function of large cellular assemblies, Curr. Opin. Struct. Biol, vol.20, pp.207-216, 2010.

P. Tompa and D. Kovacs, Intrinsically disordered chaperones in plants and animals, Biochem. Cell Biol, vol.88, pp.167-174, 2010.

N. Pietrosemoli, R. Pancsa, and P. Tompa, Structural Disorder Provides Increased Adaptability for Vesicle Trabcking Pathways, vol.9, 2013.

D. Kovacs, B. Szabo, R. Pancsa, and P. Tompa, Intrinsically disordered proteins undergo and assist folding transitions in the proteome, Arch. Biochem. Biophys, vol.531, pp.80-89, 2013.

P. Tompa and P. Csermely, The role of structural disorder in the function of RNA and protein chaperones, FASEB J, vol.18, pp.1169-75, 2004.

P. Tompa, Intrinsically disordered proteins: a 10-year recap, Trends Biochem. Sci, vol.37, pp.509-525, 2012.

R. Pancsa and P. Tompa, Structural disorder in eukaryotes, PLoS One, vol.7, p.34687, 2012.

K. Namba, Roles of partly unfolded conformations in macromolecular selfassembly, Genes Cells, vol.6, pp.1-12, 2001.

A. Garcia-pino, S. Balasubramanian, L. Wyns, E. Gazit, H. De-greve et al., Allostery and intrinsic disorder mediate transcription regulation by conditional cooperativity, Cell, vol.142, pp.101-112, 2010.

A. Kentsis, R. E. Gordon, and K. L. Borden, Control of biochemical reactions through supramolecular RING domain self-assembly, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.15404-15413, 2002.

P. J. Kranzusch and S. P. Whelan, Arenavirus Z protein controls viral RNA synthesis by locking a polymerase-promoter complex, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.19743-19751, 2011.

A. Kentsis, R. E. Gordon, and K. L. Borden, Self-assembly properties of a model RING domain, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.667-72, 2002.

T. Sumner, Dazzling History, Science, vol.343, pp.1092-1093, 2014.

, Crystallography at, vol.100, pp.1049-1168, 2014.

, Nat. Milestones, pp.1-33, 2014.

W. L. Bragg, The Structure of Some Crystals as Indicated by Their Diraction of X-rays, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.89, pp.248-277, 1913.

J. B. Sumner, A. L. Dounce, and C. Catalase, Science, vol.85, pp.366-367, 1937.

D. C. Hodgkin, The X-ray analysis of the structure of penicillin, Adv. Sci, vol.6, pp.85-89, 1949.

J. D. Watson and F. H. Crick, The structure of DNA, Cold Spring Harb. Symp. Quant. Biol, vol.18, pp.123-131, 1953.

R. E. Franklin and R. G. Gosling, Molecular Conguration in Sodium Thymonucleate, Nature, vol.171, pp.740-741, 1953.

R. Olby, Quiet debut for the double helix, Nature, vol.421, pp.402-405, 2003.

B. Maddox, The double helix and the "wronged heroine, Nature, vol.421, pp.407-408, 2003.

J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff et al., A three-dimensional model of the myoglobin molecule obtained by x-ray analysis, Nature, vol.181, pp.662-666, 1958.

M. F. Perutz, Relation between structure and sequence of haemoglobin, Nature, vol.194, pp.914-917, 1962.

L. N. Johnson and D. C. Phillips, Structure of some crystalline lysozyme-inhibitor complexes determined by X-ray analysis at 6 Angstrom resolution, Nature, vol.206, pp.761-763, 1965.

S. T. Rao and M. G. Rossmann, Comparison of super-secondary structures in proteins, J. Mol. Biol, vol.76, issue.73, pp.90388-90392, 1973.

S. C. Harrison, A. J. Olson, C. E. Schutt, F. K. Winkler, and G. Bricogne, Tomato bushy stunt virus at 2.9 A resolution, Nature, vol.276, pp.368-373, 1978.

T. A. Jones, A graphics model building and renement system for macromolecules, J. Appl. Crystallogr, vol.11, pp.268-272, 1978.

J. L. Laclare, Target Specications and Performance of the ESRF Source, J. Synchrotron Radiat, vol.1, pp.12-18, 1994.

J. P. Quintana, M. Hart, D. Bilderback, C. Henderson, D. Richter et al., Adaptive Silicon Monochromators for High-Power Insertion Devices. Tests at CHESS, ESRF and HASYLAB, p.23, 2013.

X. Chen, F. Ni, X. Tian, E. Kondrashkina, Q. Wang et al., Structural basis of actin lament nucleation by tandem W domains, Cell Rep, vol.3, pp.1910-1930, 2013.

A. D. Liverman, H. Cheng, J. E. Trosky, D. W. Leung, M. L. Yarbrough et al., Arp2/3-independent assembly of actin by Vibrio type III eector VopL, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.17117-17139, 2007.

D. Chereau, M. Boczkowska, A. Skwarek-maruszewska, I. Fujiwara, D. B. Hayes et al., Leiomodin is an actin lament nucleator in muscle cells, Science, vol.320, pp.239-282, 2008.

R. Ahuja, R. Pinyol, N. Reichenbach, L. Custer, J. Klingensmith et al., Cordon-bleu is an actin nucleation factor and controls neuronal morphology, Cell, vol.131, pp.337-50, 2007.

M. E. Quinlan, J. E. Heuser, E. Kerkho, and R. D. Mullins, Drosophila Spire is an actin nucleation factor, Nature, vol.433, pp.382-390, 2005.

L. Blanchoin, K. J. Amann, H. N. Higgs, J. B. Marchand, D. A. Kaiser et al., Direct observation of dendritic actin lament networks nucleated by Arp2/3 complex and WASP/Scar proteins, Nature, vol.404, pp.1007-1018, 2000.

R. D. Mullins, J. A. Heuser, and T. D. Pollard, The interaction of Arp2/3 complex with actin: nucleation, high abnity pointed end capping, and formation of branching networks of laments, Proc. Natl. Acad. Sci. U. S. A, vol.95, p.23, 1998.

F. Castellano, P. Montcourrier, J. C. Guillemot, E. Gouin, L. Machesky et al., Inducible recruitment of Cdc42 or WASP to a cell-surface receptor triggers actin polymerization and lopodium formation, Curr. Biol, vol.9, p.23, 1999.

M. Geese, J. J. Loureiro, J. E. Bear, J. Wehland, F. B. Gertler et al., Contribution of Ena/VASP proteins to intracellular motility of listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization, Mol. Biol. Cell, vol.13, pp.2383-96, 2002.

J. E. Bear, T. M. Svitkina, M. Krause, D. A. Schafer, J. J. Loureiro et al., Antagonism between Ena/VASP proteins and actin lament capping regulates broblast motility, Cell, vol.109, p.23, 2002.

J. E. Caldwell, S. G. Heiss, V. Mermall, and J. A. Cooper, Eects of CapZ

G. Scita, J. Nordstrom, R. Carbone, P. Tenca, G. Giardina et al., EPS8 and E3B1 transduce signals from Ras to Rac, Nature, vol.401, pp.290-293, 1999.

W. Morishita, H. Marie, and R. C. Malenka, Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses, Nat. Neurosci, vol.8, pp.1043-50, 2005.

A. Disanza, M. Carlier, T. E. Stradal, D. Didry, E. Frittoli et al., Eps8 controls actin-based motility by capping the barbed ends of actin laments, Nat. Cell Biol, vol.6, pp.1180-1188, 2004.

A. Weber, C. R. Pennise, G. G. Babcock, and V. M. Fowler, Tropomodulin caps the pointed ends of actin laments, J. Cell Biol, vol.127, p.23, 1994.

K. Okamoto, R. Narayanan, S. H. Lee, K. Murata, and Y. Hayashi, The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure, Proc. Natl. Acad. Sci. U. S. A, vol.104, pp.6418-6441, 2007.

S. Raghavachari and J. E. Lisman, Properties of quantal transmission at CA1 synapses, J. Neurophysiol, vol.92, pp.2456-67, 2004.

A. Weber, V. T. Nachmias, C. R. Pennise, M. Pring, and D. Safer, Interaction of thymosin beta 4 with muscle and platelet actin: implications for actin sequestration in resting platelets, Biochemistry, vol.31, p.23, 1992.

W. Witke, The role of prolin complexes in cell motility and other cellular processes, Trends Cell Biol, vol.14, pp.461-470, 2004.

Z. Parnass, A. Tashiro, and R. Yuste, Analysis of spine morphological plasticity in developing hippocampal pyramidal neurons, Hippocampus, vol.10, pp.561-569, 2000.

J. Grutzendler, N. Kasthuri, and W. Gan, Long-term dendritic spine stability in the adult cortex, Nature, vol.420, pp.812-818, 2002.

M. Maletic-savatic, R. Malinow, and K. Svoboda, Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity, Science, vol.283, p.23, 1999.

R. A. Edwards and J. Bryan, Fascins, a family of actin bundling proteins, Cell Motil. Cytoskeleton, vol.32, pp.1-9, 1995.

B. W. Bernstein and J. R. Bamburg, Tropomyosin binding to F-actin protects the F-actin from disassembly by brain actin-depolymerizing factor (ADF), Cell Motil, vol.2, p.23, 1982.

J. C. Pinder, E. Ungewickell, D. Bray, and W. B. Gratzer, The spectrin-actin complex and erythrocyte shape, J. Supramol. Struct, vol.8, pp.439-484, 1978.

S. R. Goodman and D. Branton, Spectrin binding and the control of membrane protein mobility, J. Supramol. Struct, vol.8, pp.455-63, 1978.

R. Dominguez, Actin-binding proteins--a unifying hypothesis, Trends Biochem. Sci, vol.29, pp.572-580, 2004.

R. Dominguez, The beta-thymosin/WH2 fold: multifunctionality and structure, vol.1112, pp.86-94, 2007.

D. Chereau, F. Ker, P. Gracea, Z. Grabarek, K. Langsetmo et al., Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for lament assembly, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.16644-16653, 2005.

S. H. Lee and R. Dominguez, Regulation of actin cytoskeleton dynamics in cells, Mol. Cells, pp.311-325, 2010.

P. Lappalainen, M. M. Kessels, M. J. Cope, and D. G. Drubin, The ADF homology (ADF-H) domain: a highly exploited actin-binding module, Mol. Biol. Cell, vol.9, p.24, 1998.

E. Paunola, P. K. Mattila, and P. Lappalainen, WH2 domain: a small, versatile adapter for actin monomers, FEBS Lett, vol.513, pp.92-97, 2002.

A. M. Mcgough, C. J. Staiger, J. Min, and K. D. Simonetti, The gelsolin family of actin regulatory proteins: modular structures, versatile functions, FEBS Lett, vol.552, pp.75-81, 2003.

M. Gimona, K. Djinovic-carugo, W. J. Kranewitter, and S. J. Winder, Functional plasticity of CH domains, FEBS Lett, vol.513, pp.98-106, 2002.

B. L. Goode and M. J. Eck, Mechanism and function of formins in the control of actin assembly, Annu. Rev. Biochem, vol.76, pp.593-627, 2007.

J. R. Sellers, Myosins: a diverse superfamily, Biochim. Biophys. Acta, vol.1496, pp.3-22, 2000.

E. G. Yarmola, S. Parikh, and M. R. Bubb, Formation and implications of a ternary complex of prolin, thymosin beta 4, and actin, J. Biol. Chem, vol.276, pp.45555-63, 2001.

S. C. Mockrin and E. D. Korn, Acanthamoeba prolin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5'-triphosphate, Biochemistry, vol.19, pp.5359-62, 1980.

E. Nishida, Opposite eects of colin and prolin from porcine brain on rate of exchange of actin-bound adenosine 5'-triphosphate, Biochemistry, vol.24, pp.1160-1164, 1985.

F. Ferron, G. Rebowski, S. H. Lee, and R. Dominguez, Structural basis for the recruitment of prolin-actin complexes during lament elongation by Ena/VASP, EMBO J, vol.26, pp.4597-606, 2007.

S. H. Lee, F. Ker, D. Chereau, F. Ferron, A. Klug et al., Structural basis for the actin-binding function of missing-in-metastasis, Structure, vol.15, pp.145-55, 2007.

F. Ferron, S. Longhi, B. Canard, and D. Karlin, A practical overview of protein disorder prediction methods, Proteins, vol.65, pp.1-14, 2006.

S. Grenklo, M. Geese, U. Lindberg, J. Wehland, R. Karlsson et al., A crucial role for prolin-actin in the intracellular motility of Listeria monocytogenes, EMBO Rep, vol.4, pp.523-532, 2003.

A. E. Engqvist-goldstein and D. G. Drubin, Actin assembly and endocytosis: from yeast to mammals, Annu. Rev. Cell Dev. Biol, vol.19, pp.287-332, 2003.

M. Kaksonen, C. P. Toret, and D. G. Drubin, Harnessing actin dynamics for clathrin-mediated endocytosis, Nat. Rev. Mol. Cell Biol, vol.7, pp.404-418, 2006.

G. Scita, S. Confalonieri, P. Lappalainen, and S. Suetsugu, IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions, Trends Cell Biol, vol.18, pp.52-60, 2008.

A. Frost, V. M. Unger, and P. D. Camilli, The BAR domain superfamily: membrane-molding macromolecules, Cell, vol.137, pp.191-197, 2009.

J. C. Dawson, J. A. Legg, and L. M. Machesky, Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis, Trends Cell Biol, vol.16, pp.493-501, 2006.

A. Frost, R. Perera, A. Roux, K. Spasov, O. Destaing et al., Structural basis of membrane invagination by F-BAR domains, Cell, vol.132, pp.807-824, 2008.

T. Itoh, P. De-camilli, F. Bar, and . -bar, EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature, Biochim. Biophys. Acta, vol.1761, pp.897-912, 2006.

W. M. Henne, H. M. Kent, M. G. Ford, B. G. Hegde, O. Daumke et al., Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that eects membrane curvature, Structure, vol.15, pp.839-52, 2007.

A. Shimada, H. Niwa, K. Tsujita, S. Suetsugu, K. Nitta et al., Curved EFC/F-BAR-domain dimers are joined end to end into a lament for membrane invagination in endocytosis, Cell, vol.129, pp.761-72, 2007.

B. J. Peter, H. M. Kent, I. G. Mills, Y. Vallis, P. J. Butler et al., BAR domains as sensors of membrane curvature: the amphiphysin BAR structure, Science, vol.303, pp.495-504, 2004.

B. Habermann, The BAR-domain family of proteins: a case of bending and binding?, EMBO Rep, vol.5, pp.250-255, 2004.

P. Little, T. Teka, and A. Azeze, Cross-Border Livestock Trade and Food Security in the Horn of Africa: An Overview, 2001.

C. Schmaljohn, J. W. Hooper-;-d, P. M. Knipe, D. E. Howley, R. A. Gribn et al., Bunyaviridae: the viruses and their replication, pp.1581-1602, 2001.

R. Elliott, Molecular biology of the Bunyaviridae, J. Gen. Virol, vol.71, pp.501-522, 1990.

J. N. Barr and G. W. Wertz, Role of the conserved nucleotide mismatch within 3'-and 5'-terminal regions of Bunyamwera virus in signaling transcription, J. Virol, vol.79, pp.3586-3594, 2005.

M. Delarue, O. Poch, N. Tordo, D. Moras, and P. Argos, An attempt to unify the structure of polymerases, Protein Eng, vol.3, p.28, 1990.

J. A. Bruenn, A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases, Nucleic Acids Res, vol.31, pp.1821-1829, 2003.

J. L. Patterson, B. Holloway, and D. Kolakofsky, La Crosse virions contain a primer-stimulated RNA polymerase and a methylated cap-dependent endonuclease, J. Virol, vol.52, p.28, 1984.

D. H. Bishop, M. E. Gay, and Y. Matsuoko, Non Viral heterogeneous sequences are present at the 5' ends of one species of snowshoe hare bunyavirus S complementary RNA, Nucleic Acids Res, vol.11, pp.6409-6418, 1983.

J. Reguera, F. Weber, and S. Cusack, Bunyaviridae RNA polymerases (Lprotein) have an N-terminal, in@uenza-like endonuclease domain, essential for viral cap-dependent transcription, PLoS Pathog, vol.6, 2010.

R. F. Pettersson and C. H. Bonsdor, Ribonucleoproteins of Uukuniemi virus are circular, J. Virol, vol.15, pp.386-92, 1975.

C. Peters and K. Linthicum, Rift Valley fever, Handb. Zoonoses, Sect. B. Viral, 2nd Ed, pp.125-138, 1994.

P. M. Sall, P. Zanotto, O. K. Vialat, M. Sène, and . Bouloy, Molecular epidemiology and emergence of Rift Valley fever, Mem. Inst. Oswaldo Cruz, vol.93, pp.609-623, 1998.

L. De-spiez, Fièvre de la vallée du Rift, 2006.

C. F. Control, Prevention, Update: outbreak of Rift Valley fever, 2000.

, Rift Valley Fever could spread with movement of animals from East Africa, 2007.

D. Ungerer and P. Klerk, Rift Valley fever virus : An evaluation of the outbreaks in South africa, Vet. Res

D. Sissoko, Rift Valley Fever, Mayotte, Emerg. Infect. Dis, vol.15, pp.568-570, 2007.

G. E. , Système sous régional d'alerte et de contrôle de la èvre de la vallée du Rift en Afrique de l'Ouest, Sciences, 2005.

M. Pépin, M. Bouloy, B. H. Bird, A. Kemp, J. Paweska et al., Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention, Vet. Res, vol.41, p.61, 2010.

C. F. , Control, Prevention, Outbreak of Rift Valley fever, pp.1065-1066, 2000.

N. L. May and N. Gauliard, The N Terminus of Rift Valley Fever Virus Nucleoprotein Is Essential for Dimerization, J. Virol, vol.79, pp.11974-11980, 2005.

L. Brunotte, R. Kerber, W. Shang, F. Hauer, M. Hass et al., Structure of the Lassa virus nucleoprotein revealed by X-ray crystallography, small-angle X-ray scattering, and electron microscopy, J. Biol. Chem, vol.286, pp.38748-56, 2011.

X. Qi, S. Lan, W. Wang, L. M. Schelde, H. Dong et al., Cap binding and immune evasion revealed by Lassa nucleoprotein structure, Nature, vol.468, pp.779-83, 2010.

E. Ortiz-riaño, B. Y. Cheng, J. C. De-la-torre, and L. Martínez-sobrido, Selfassociation of Lymphocytic Choriomeningitis Virus Nucleoprotein is mediated by its N-terminal region and is not required for its anti-interferon function, J. Virol, 2012.

M. Eglo, E. Decroly, H. Malet, B. Selisko, D. Benarroch et al., Structural and functional analysis of methylation and 5'-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5, J. Mol. Biol, vol.372, pp.723-759, 2007.

E. Decroly, C. Debarnot, F. Ferron, M. Bouvet, B. Coutard et al., Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2'-O-Methyltransferase nsp10/nsp16 Complex, PLoS Pathog, vol.7, p.1002059, 2011.

B. Morin, B. Coutard, M. Lelke, F. Ferron, R. Kerber et al., The Nterminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription, PLoS Pathog, vol.6, p.1001038, 2010.

A. D. Davidson, New insights into @avivirus nonstructural protein 5, Adv. Virus Res, pp.41-101, 2009.

L. J. Yap, D. Luo, K. Y. Chung, S. P. Lim, C. Bodenreider et al., Crystal structure of the dengue virus methyltransferase bound to a 5'-capped octameric RNA, PLoS One, vol.5, 2010.

B. Hijawi, M. Abdallat, A. Sayaydeh, S. Alqasrawi, A. Haddadin et al., Novel coronavirus infections in Jordan, p.19, 2012.

K. C. Kronmann, S. Nimo-paintsil, F. Guirguis, L. C. Kronmann, K. Bonney et al., Two novel arenaviruses detected in pygmy mice, Ghana., Emerg. Infect. Dis, vol.19, pp.1832-1837, 2013.

R. N. Charrel and X. De-lamballerie, Arenaviruses other than Lassa virus, Antiviral Res, vol.57, pp.89-100, 2003.

J. M. Macleod, A. D'antuono, M. E. Loureiro, J. C. Casabona, G. Gomez et al., Identication of two functional domains within the arenavirus nucleoprotein, J. Virol, vol.85, pp.2012-2035, 2011.

K. M. Hastie, C. R. Kimberlin, M. A. Zandonatti, I. J. Macrae, and E. O. Saphire, Structure of the Lassa virus nucleoprotein reveals a dsRNA-specic 3' to 5' exonuclease activity essential for immune suppression, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.2396-401, 2011.

L. Martínez-sobrido, S. Emonet, P. Giannakas, B. Cubitt, A. García-sastre et al., Identication of amino acid residues critical for the antiinterferon activity of the nucleoprotein of the prototypic arenavirus lymphocytic choriomeningitis virus, J. Virol, vol.83, pp.11330-11340, 2009.

M. Russier, S. Reynard, N. Tordo, and S. Baize, NK cells are strongly activated by Lassa and Mopeia virus-infected human macrophages in vitro but do not mediate virus suppression, Eur. J. Immunol, vol.42, pp.1822-1854, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00965661

D. Moshko, M. S. Salvato, and I. S. Lukashevich, Molecular characterization of a reassortant virus derived from Lassa and Mopeia viruses, Virus Genes, vol.34, pp.169-76, 2007.

D. Pannetier, S. Reynard, M. Russier, A. Journeaux, N. Tordo et al., Human dendritic cells infected with the nonpathogenic Mopeia virus induce stronger T-cell responses than those infected with Lassa virus, J. Virol, vol.85, pp.8293-306, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02292517

C. Pythoud, W. W. Rodrigo, G. Pasqual, S. Rothenberger, L. Martínez-sobrido et al., Arenavirus nucleoprotein targets interferon regulatory factor-activating kinase IKK{varepsilon}, J. Virol, vol.86, pp.7728-7766, 2012.

W. W. Rodrigo, E. Ortiz-riaño, C. Pythoud, S. Kunz, J. C. De-la-torre et al., Arenavirus nucleoproteins prevent activation of nuclear factor kappa B, J. Virol, vol.86, pp.8185-97, 2012.

S. Urata and J. Yasuda, Molecular Mechanism of Arenavirus Assembly and Budding, Viruses, pp.2049-2079, 2012.

O. Takeuchi and S. Akira, MDA5/RIG-I and virus recognition, Curr. Opin. Immunol, vol.20, pp.17-22, 2008.

P. Luthra, D. Sun, R. H. Silverman, and B. He, Activation of IFN-? expression by a viral mRNA through RNase L and MDA5, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.2118-2141, 2011.

M. Yoneyama, K. Onomoto, and T. Fujita, Cytoplasmic recognition of RNA, Adv. Drug Deliv. Rev, vol.60, pp.841-847, 2008.

E. Meylan, J. Tschopp, and M. Karin, Intracellular pattern recognition receptors in the host response, Nature, vol.442, pp.39-44, 2006.

K. M. Hastie, S. Bale, C. R. Kimberlin, and E. O. Saphire, Hiding the evidence: two strategies for innate immune evasion by hemorrhagic fever viruses, Curr. Opin. Virol, vol.2, pp.151-157, 2012.

C. A. Biron and G. C. Sen, Innate Responses to Viral Infections, Fields Virol, pp.250-278, 2007.

C. Wilkins and M. Gale, Recognition of viruses by cytoplasmic sensors, Curr. Opin. Immunol, vol.22, pp.41-48, 2010.

T. Kawai and S. Akira, Innate immune recognition of viral infection, Nat. Immunol, vol.7, pp.131-138, 2006.

S. Akira, S. Uematsu, and O. Takeuchi, Pathogen recognition and innate immunity, Cell, vol.124, pp.783-801, 2006.

A. Pichlmair, O. Schulz, C. P. Tan, T. I. Näslund, P. Liljeström et al., RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates, Science, vol.314, pp.997-1001, 2006.

A. Pichlmair, O. Schulz, C. Tan, J. Rehwinkel, H. Kato et al., Activation of MDA5 requires higher-order RNA structures generated during virus infection, J. Virol, vol.83, pp.10761-10770, 2009.

H. Häcker and M. Karin, Regulation and function of IKK and IKK-related kinases, Sci. STKE, p.13, 2006.

X. Li, H. J. Ezelle, T. Y. Hsi, and B. A. Hassel, A central role for RNA in the induction and biological activities of type 1 interferons, Rev. RNA, vol.2, pp.58-78, 2011.

J. Marq, D. Kolakofsky, and D. Garcin, Unpaired 5' ppp-nucleotides, as found in arenavirus double-stranded RNA panhandles, are not recognized by RIG-I, J. Biol. Chem, vol.285, pp.18208-18216, 2010.

S. Suetsugu, K. Toyooka, and Y. Senju, Subcellular membrane curvature mediated by the BAR domain superfamily proteins, Semin. Cell Dev. Biol, vol.21, pp.340-349, 2010.

C. Bachmann, L. Fischer, U. Walter, and R. M. , The EVH2 domain of the vasodilator-stimulated phosphoprotein mediates tetramerization, F-actin binding, and actin bundle formation, 1999.

, J Biol Chem, vol.274, pp.23549-23557

M. Barzik, T. I. Kotova, H. N. Higgs, L. Hazelwood, D. Hanein et al., Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins, J Biol Chem, vol.280, pp.28653-28662, 2005.

J. E. Bear, T. M. Svitkina, M. Krause, D. A. Schafer, J. J. Loureiro et al., Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility, Cell, vol.109, pp.509-521, 2002.

L. Blanchoin and T. D. Pollard, Hydrolysis of ATP by polymerized actin depends on the bound divalent cation but not profilin, Biochemistry, vol.41, pp.597-602, 2002.

M. Boukhelifa, M. M. Parast, J. E. Bear, F. B. Gertler, and C. A. Otey, Palladin is a novel binding partner for Ena/VASP family members, Cell Motil Cytoskeleton, vol.58, pp.17-29, 2004.

B. Brannetti and M. Helmer-citterich, iSPOT: a web tool to infer the interaction specificity of families of protein modules, Nucleic Acids Res, vol.31, pp.3709-3711, 2003.

N. P. Brindle, M. R. Holt, J. E. Davies, C. J. Price, and D. R. Critchley, The focal-adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin, Biochem J, vol.318, pp.753-757, 1996.

I. Callebaut, G. Labesse, P. Durand, A. Poupon, L. Canard et al., Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives, Cell Mol Life Sci, vol.53, pp.621-645, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00309857

M. F. Carlier and D. Pantaloni, Direct evidence for ADP-Pi-F-actin as the major intermediate in ATP-actin polymerization. Rate of dissociation of Pi from actin filaments, Biochemistry, vol.25, pp.7789-7792, 1986.

T. Chakraborty, F. Ebel, E. Domann, K. Niebuhr, B. Gerstel et al., A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells, EMBO J, vol.14, pp.1314-1321, 1995.

D. Chereau and R. Dominguez, Understanding the role of the G-actin-binding domain of Ena/VASP in actin assembly, J Struct Biol, vol.155, pp.195-201, 2006.

D. Chereau, F. Kerff, P. Graceffa, Z. Grabarek, K. Langsetmo et al., Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly, Proc Natl Acad Sci, vol.102, pp.16644-16649, 2005.

J. K. Chik, U. Lindberg, and C. E. Schutt, The structure of an open state of beta-actin at 2.65 Å resolution, J Mol Biol, vol.263, pp.607-623, 1996.

C. Co, D. T. Wong, S. Gierke, V. Chang, and J. Taunton, Mechanism of actin network attachment to moving membranes: barbed end capture by N-WASP WH2 domains, Cell, vol.128, pp.901-913, 2007.

J. Condeelis, Life at the leading edge: the formation of cell protrusions, Annu Rev Cell Biol, vol.9, pp.411-444, 1993.

M. G. Coppolino, M. Krause, P. Hagendorff, D. A. Monner, W. Trimble et al., Evidence for a molecular complex consisting of Fyb/SLAP, SLP-76, Nck, VASP and WASP that links the actin cytoskeleton to Fcgamma receptor signalling during phagocytosis, J Cell Sci, vol.114, pp.4307-4318, 2001.

R. B. Dickinson and D. L. Purich, Clamped-filament elongation model for actin-based motors, Biophys J, vol.82, pp.605-617, 2002.

R. B. Dickinson, F. S. Southwick, and D. L. Purich, A direct-transfer polymerization model explains how the multiple profilin-binding sites in the actoclampin motor promote rapid actin-based motility, Arch Biochem Biophys, vol.406, pp.296-301, 2002.

R. Dominguez, Actin-binding proteins-a unifying hypothesis, Trends Biochem Sci, vol.29, pp.572-578, 2004.

C. G. Dos-remedios, D. Chhabra, M. Kekic, I. V. Dedova, M. Tsubakihara et al., Actin binding proteins: regulation of cytoskeletal microfilaments, Physiol Rev, vol.83, pp.433-473, 2003.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr D Biol Crystallogr, vol.60, pp.2126-2132, 2004.

S. Feng, J. K. Chen, H. Yu, J. A. Simon, and S. L. Schreiber, Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions, Science, vol.266, pp.1241-1247, 1994.

M. Geese, J. J. Loureiro, J. E. Bear, J. Wehland, F. B. Gertler et al., Contribution of Ena/VASP proteins to intracellular motility of Listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization, Mol Biol Cell, vol.13, pp.2383-2396, 2002.

M. Geese, K. Schluter, M. Rothkegel, B. M. Jockusch, J. Wehland et al., Accumulation of profilin II at the surface of Listeria is concomitant with the onset of motility and correlates with bacterial speed, J Cell Sci, vol.113, pp.1415-1426, 2000.

F. B. Gertler, A. R. Comer, J. L. Juang, S. M. Ahern, M. J. Clark et al., enabled, a dosage-sensitive suppressor of mutations in the Drosophila Abl tyrosine kinase, encodes an Abl substrate with SH3 domain-binding properties, Genes Dev, vol.9, pp.521-533, 1995.

P. Graceffa and R. Dominguez, Crystal structure of monomeric actin in the ATP state: structural basis of nucleotide-dependent actin dynamics, J Biol Chem, vol.278, pp.34172-34180, 2003.

S. Grenklo, M. Geese, U. Lindberg, J. Wehland, R. Karlsson et al., A crucial role for profilin-actin in the intracellular motility of Listeria monocytogenes, EMBO Rep, vol.4, pp.523-529, 2003.

M. Hertzog, C. Van-heijenoort, D. Didry, M. Gaudier, J. Coutant et al., The beta-thymosin/WH2 domain; structural basis for the switch from inhibition to promotion of actin assembly, Cell, vol.117, pp.611-623, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00121857

E. Irobi, L. D. Burtnick, D. Urosev, K. Narayan, and R. C. Robinson, From the first to the second domain of gelsolin: a common path on the surface of actin?, FEBS Lett, vol.552, pp.86-90, 2003.

V. Jonckheere, A. Lambrechts, J. Vandekerckhove, and C. Ampe, Dimerization of profilin II upon binding the (GP5)3 peptide from VASP overcomes the inhibition of actin nucleation by profilin II and thymosin beta4, FEBS Lett, vol.447, pp.257-263, 1999.

F. Kang, R. O. Laine, M. R. Bubb, F. S. Southwick, and D. L. Purich, Profilin interacts with the Gly-Pro-Pro-Pro-Pro-Pro sequences of vasodilator-stimulated phosphoprotein (VASP): implications for actin-based Listeria motility, Biochemistry, vol.36, pp.8384-8392, 1997.

F. Kang, D. L. Purich, F. A. Southwick, D. Sept, S. Joseph et al., Profilin promotes barbed-REFERENCES Baker, 1999.

, Electrostatics of nanosystems: application to microtubules and the ribosome, Proc. Natl. Acad. Sci. USA, vol.98, pp.10037-10041

G. Bompard, S. J. Sharp, G. Freiss, and L. M. Machesky, Involvement of Rac in actin cytoskeleton rearrangements induced by MIM-B, J. Cell Sci, vol.118, pp.5393-5403, 2005.

C. A. Callahan, T. Ofstad, L. Horng, J. K. Wang, H. H. Zhen et al., MIM/BEG4, a Sonic hedgehogresponsive gene that potentiates Gli-dependent transcription, Genes Dev, vol.18, pp.2724-2729, 2004.

I. Callebaut, G. Labesse, P. Durand, A. Poupon, L. Canard et al., Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives, Cell. Mol. Life Sci, vol.53, pp.621-645, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00309857

D. Chereau and R. Dominguez, Understanding the role of the G-actin-binding domain of Ena/VASP in actin assembly, J. Struct. Biol, vol.155, pp.195-201, 2006.

D. Chereau, F. Kerff, P. Graceffa, Z. Grabarek, K. Langsetmo et al., Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly, Proc. Natl. Acad. Sci. USA, vol.102, pp.16644-16649, 2005.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

Y. Funato, T. Terabayashi, N. Suenaga, M. Seiki, T. Takenawa et al., IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness, Cancer Res, vol.64, pp.5237-5244, 2004.

R. Gonzalez-quevedo, M. Shoffer, L. Horng, and A. E. Oro, Receptor tyrosine phosphatase-dependent cytoskeletal remodeling by the hedgehog-responsive gene MIM/BEG4, J. Cell Biol, vol.168, pp.453-463, 2005.

P. Graceffa and R. Dominguez, Crystal structure of monomeric actin in the atp state: structural basis of nucleotide-dependent actin dynamics, J. Biol. Chem, vol.278, pp.34172-34180, 2003.

B. Habermann, The BAR-domain family of proteins: a case of bending and binding?, EMBO Rep, vol.5, pp.250-255, 2004.

E. Irobi, A. H. Aguda, M. Larsson, C. Guerin, H. L. Yin et al., Structural basis of actin sequestration by thymosin-beta4: implications for WH2 proteins, 2004.

, EMBO J, vol.23, pp.3599-3608

E. Irobi, L. D. Burtnick, D. Urosev, K. Narayan, R. et al.,

, From the first to the second domain of gelsolin: a common path on the surface of actin?, FEBS Lett, vol.552, pp.86-90

C. Schmaljohn, J. W. Hooper, D. M. Knipe, P. M. Howley, D. E. Griffin et al., Bunyaviridae: the viruses and their replication, ) Field Virol 4th ed. PhiladelphiaPa.: Lippincott, Williams and Wilkins, pp.1581-1602, 2001.

H. H. Balkhy and Z. A. Memish, Rift Valley fever: an uninvited zoonosis in the Arabian peninsula, Int J Antimicrob Agents, vol.21, pp.153-157, 2003.

V. Chevalier, M. Pepin, L. Plee, and R. Lancelot, Rift Valley fever-a threat for Europe?, Euro Surveill, vol.15, 2010.

S. C. Weaver and W. K. Reisen, Present and future arboviral threats, Antiviral Res, vol.85, pp.328-345, 2010.

T. Ikegami and S. Makino, Rift valley fever vaccines, Vaccine, vol.27, issue.4, pp.69-72, 2009.

A. Anyamba, J. P. Chretien, J. Small, C. J. Tucker, and P. B. Formenty, Prediction of a Rift Valley fever outbreak, Proc Natl Acad Sci U S A, vol.106, pp.955-959, 2009.

J. N. Barr and G. W. Wertz, , 2005.

M. Gu and C. D. Lima, Processing the message: structural insights into capping and decapping mRNA, Curr Opin Struct Biol, vol.15, pp.99-106, 2005.

S. Shuman, Structure, mechanism, and evolution of the mRNA capping apparatus, Prog Nucleic Acid Res Mol Biol, vol.66, pp.1-40, 2001.

S. Shuman, What messenger RNA capping tells us about eukaryotic evolution, Nat Rev Mol Cell Biol, vol.3, pp.619-625, 2002.

M. Yoneyama and T. Fujita, Recognition of viral nucleic acids in innate immunity, Rev Med Virol, vol.20, pp.4-22, 2010.

S. Shuman, The mRNA capping apparatus as drug target and guide to eukaryotic phylogeny, Cold Spring Harb Symp Quant Biol, vol.66, pp.301-312, 2001.

T. Ahola and L. Kaariainen, Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP, Proc Natl Acad Sci U S A, vol.92, pp.507-511, 1995.

T. Ogino and A. K. Banerjee, Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus, Mol Cell, vol.25, pp.85-97, 2007.

S. J. Plotch, M. Bouloy, I. Ulmanen, and R. M. Krug, A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription, Cell, vol.23, pp.847-858, 1981.

P. A. Rota, M. S. Oberste, S. S. Monroe, W. A. Nix, and R. Campagnoli, Characterization of a novel coronavirus associated with severe acute respiratory syndrome, Science, vol.300, pp.1394-1399, 2003.

A. E. Gorbalenya, L. Enjuanes, J. Ziebuhr, and E. J. Snijder, Nidovirales: evolving the largest RNA virus genome, Virus Res, vol.117, pp.17-37, 2006.

M. M. Lai, C. D. Patton, and S. A. Stohlman, Further characterization of mRNA's of mouse hepatitis virus: presence of common 59-end nucleotides, J Virol, vol.41, pp.557-565, 1982.

M. M. Lai and S. A. Stohlman, Comparative analysis of RNA genomes of mouse hepatitis viruses, J Virol, vol.38, pp.661-670, 1981.

A. L. Van-vliet, S. L. Smits, P. J. Rottier, and R. J. De-groot, Discontinuous and nondiscontinuous subgenomic RNA transcription in a nidovirus, EMBO J, vol.21, pp.6571-6580, 2002.

E. Decroly, I. Imbert, B. Coutard, M. Bouvet, and B. Selisko, Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-29O)-methyltransferase activity, J Virol, vol.82, pp.8071-8084, 2008.

Y. Chen, H. Cai, J. Pan, N. Xiang, and P. Tien, Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7-methyltransferase, Proc Natl Acad Sci U S A, vol.106, pp.3484-3489, 2009.

Y. Furuichi and A. J. Shatkin, Viral and cellular mRNA capping: past and prospects, Adv. Virus Res, vol.55, pp.135-184, 2000.

M. Gu and C. D. Lima, Processing the message: structural insights into capping and decapping mRNA, Curr. Opin. Struct. Biol, vol.15, pp.99-106, 2005.

S. Shuman, Structure, mechanism, and evolution of the mRNA capping apparatus, Prog. Nucl. Acid Res. Mol. Biol, vol.66, pp.1-40, 2001.

I. Bougie and M. Bisaillon, The broad spectrum antiviral nucleoside ribavirin as a substrate for a viral RNA capping enzyme, J. Biol. Chem, vol.279, pp.22124-22130, 2004.

J. D. Graci and C. E. Cameron, Mechanisms of action of ribavirin against distinct viruses, Rev. Med. Virol, vol.16, pp.37-48, 2006.

J. Magden, L. Kaariainen, and T. Ahola, Inhibitors of virus replication: recent developments and prospects, Appl. Microbiol. Biotechnol, vol.66, pp.612-621, 2005.

D. Ray, A. Shah, M. Tilgner, Y. Guo, Y. Zhao et al., West Nile virus 5?-cap structure is formed by sequential guanine N-7 and ribose 2?-O methylations by nonstructural protein 5, J. Virol, vol.80, pp.8362-8370, 2006.

T. Ahola and L. Kaariainen, Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP, Proc. Natl Acad. Sci. USA, vol.92, pp.507-511, 1995.

T. Ogino and A. K. Banerjee, Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus, Mol. Cell, vol.25, pp.85-97, 2007.

M. Zhou, L. Deng, F. Kashanchi, J. N. Brady, A. J. Shatkin et al., The Tat/TARdependent phosphorylation of RNA polymerase II Cterminal domain stimulates cotranscriptional capping of HIV-1 mRNA, Proc. Natl Acad. Sci. USA, vol.100, pp.12666-12671, 2003.

O. G. Engelhardt and E. Fodor, Functional association between viral and cellular transcription during influenza virus infection, Rev. Med. Virol, vol.16, pp.329-345, 2006.

M. Bisaillon and G. Lemay, Characterization of the reovirus lambda1 protein RNA 5?-triphosphatase activity, J. Biol. Chem, vol.272, pp.29954-29957, 1997.

J. Kim, J. S. Parker, K. E. Murray, and M. L. Nibert, Nucleoside and RNA triphosphatase activities of orthoreovirus transcriptase cofactor mu2, J. Biol. Chem, vol.279, pp.4394-4403, 2004.

K. M. Reinisch, M. L. Nibert, and S. C. Harrison, Structure of the reovirus core at 3.6 Å resolution, Nature, vol.404, pp.960-967, 2000.

L. Kaariainen and T. Ahola, Functions of alphavirus non-structural proteins in RNA replication, Prog. Nucl. Acid Res. Mol. Biol, vol.71, pp.187-222, 2002.

G. R. Cleaves and D. T. Dubin, Methylation status of intracellular dengue type 2 40 S RNA, Virology, vol.96, pp.159-165, 1979.

G. Bartelma and R. Padmanabhan, Expression, purification, and characterization of the RNA 5?-triphosphatase activity of dengue virus type 2 nonstructural protein 3, Virology, vol.299, pp.122-132, 2002.

D. Benarroch, B. Selisko, G. A. Locatelli, G. Maga, J. L. Romette et al., The RNA helicase, nucleotide 5?-triphosphatase, and RNA 5?-triphosphatase activities of dengue virus protein NS3 are Mg 2+ -dependent and require a functional Walker B motif in the helicase catalytic core, Virology, vol.328, pp.208-218, 2004.

G. Wengler and G. Wengler, The NS 3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity, Virology, vol.197, pp.265-273, 1993.

M. P. Egloff, D. Benarroch, B. Selisko, J. L. Romette, and B. Canard, An RNA cap (nucleoside-2?-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization, 2002.

, EMBO J, vol.21, pp.2757-2768

F. Peyrane, B. Selisko, E. Decroly, J. J. Vasseur, D. Benarroch et al., Highyield production of short GpppA-and 7MeGpppA-capped RNAs and HPLC-monitoring of methyltransfer reactions at the guanine-N7 and adenosine-2?O positions, Nucl. Acids Res, vol.35, p.26, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00139133

Y. Zhou, D. Ray, Y. Zhao, H. Dong, S. Ren et al., Structure and function of flavivirus NS5 methyltransferase, J. Virol, vol.81, pp.3891-3903, 2007.

H. Dong, D. Ray, S. Ren, B. Zhang, F. Puig-basagoiti et al., Distinct RNA elements confer specificity to flavivirus RNA cap methylation events, J. Virol, vol.81, pp.4412-4421, 2007.

J. Li, J. T. Wang, and S. P. Whelan, A unique strategy for mRNA cap methylation used by vesicular stomatitis virus, Proc. Natl Acad. Sci. USA, vol.103, pp.8493-8498, 2006.

A. E. Hodel, P. D. Gershon, and F. A. Quiocho, Structural basis for sequence-nonspecific recognition of 5?-capped mRNA by a cap-modifying enzyme, Mol. Cell, vol.1, pp.443-447, 1998.

A. E. Hodel, P. D. Gershon, X. Shi, S. M. Wang, and F. A. Quiocho, Specific protein recognition of an mRNA cap through its alkylated base, Nature Struct. Biol, vol.4, pp.350-354, 1997.

H. Matsuo, H. Li, A. M. Mcguire, C. M. Fletcher, A. C. Gingras et al., Structure of translation factor eIF4E bound to m7GDP and interaction with 4E-binding protein, Nature Struct. Biol, vol.4, pp.717-724, 1997.

G. Hu, P. D. Gershon, A. E. Hodel, and F. A. Quiocho, mRNA cap recognition: dominant role of enhanced stacking interactions between methylated bases and protein aromatic side chains, Proc. Natl Acad. Sci. USA, vol.96, pp.7149-7154, 1999.

G. D. Fasman, Handbook of Biochemistry and Molecular Biology: Nucleis Acids, 1975.

A. E. Hodel, P. D. Gershon, X. Shi, and F. A. Quiocho, The 1.85 Å structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends, Cell, vol.85, pp.247-256, 1996.

C. Li, Y. Xia, X. Gao, and P. D. Gershon, Mechanism of RNA 2?-O-methylation: evidence that the catalytic lysine acts to steer rather than deprotonate the target nucleophile, Biochemistry, vol.43, pp.5680-5687, 2004.

W. Saenger, Principles of Nucleic Acid Structure, 1984.

Z. Otwinowski and W. Minor, Processing of X-Ray diffraction data collected in oscillation mode, Methods Enzymol, vol.276, pp.307-326, 1997.

A. G. Leslie, The integration of macromolecular diffraction data, Acta Crystallog. sect. D, vol.62, pp.48-57, 2006.

. Ccp4, The CCP4 suite: programs for protein cristallography, Acta Crystallog. sect. D, vol.50, pp.760-763, 1994.

J. Navaza, Implementation of molecular replacement in AMoRe, Acta Crystallog. sect. D, vol.57, pp.1367-1372, 2001.

G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method, Acta Crystallog. sect. D, vol.53, pp.240-255, 1997.

A. T. Brunger, P. D. Adams, G. M. Clore, W. L. Delano, P. Gros et al., , 1998.

, Crystallography & NMR system: a new software suite for macromolecular structure determination

, Acta Crystallog. sect. D, vol.54, pp.905-921

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallog. sect. D, vol.60, pp.2126-2132, 2004.

R. A. Laskowski, M. W. Macarthur, D. S. Moss, and J. M. Thornton, PROCHECK: a program to check the stereochemical quality of a protein structure, J. Appl. Crystallog, vol.26, pp.283-291, 1993.

A. Delean, P. J. Munson, and D. Rodbard, Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves, Am. J. Physiol, vol.235, pp.97-102, 1978.

T. Briese, J. T. Paweska, L. K. Mcmullan, S. K. Hutchison, and C. Street, Genetic detection and characterization of Lujo virus, a new hemorrhagic feverassociated arenavirus from southern Africa, PLoS Pathog, vol.5, p.1000455, 2009.

R. N. Charrel, X. De-lamballerie, and S. Emonet, Phylogeny of the genus Arenavirus, Curr Opin Microbiol, vol.11, pp.362-368, 2008.

L. L. Barton, S. C. Budd, W. S. Morfitt, C. J. Peters, and T. G. Ksiazek, Congenital lymphocytic choriomeningitis virus infection in twins, Pediatr Infect Dis J, vol.12, pp.942-946, 1993.

L. L. Barton and N. J. Hyndman, Lymphocytic choriomeningitis virus: reemerging central nervous system pathogen, Pediatrics, vol.105, p.35, 2000.

, Arenavirus Endonuclease Structure PLoS Pathogens | www.plospathogens.org 10, vol.6, 2010.

S. A. Fischer, M. B. Graham, M. J. Kuehnert, C. N. Kotton, and A. Srinivasan, Transmission of lymphocytic choriomeningitis virus by organ transplantation, N Engl J Med, vol.354, pp.2235-2249, 2006.

G. Palacios, J. Druce, L. Du, T. Tran, and C. Birch, A new arenavirus in a cluster of fatal transplant-associated diseases, N Engl J Med, vol.358, pp.991-998, 2008.

B. J. Meyer, J. C. De-la-torre, and P. J. Southern, Arenaviruses: genomic RNAs, transcription, and replication, Curr Top Microbiol Immunol, vol.262, pp.139-157, 2002.

M. S. Salvato and E. M. Shimomaye, The completed sequence of lymphocytic choriomeningitis virus reveals a unique RNA structure and a gene for a zinc finger protein, Virology, vol.173, pp.1-10, 1989.

B. J. Meyer and P. J. Southern, Concurrent sequence analysis of 59 and 39 RNA termini by intramolecular circularization reveals 59 nontemplated bases and 39 terminal heterogeneity for lymphocytic choriomeningitis virus mRNAs, J Virol, vol.67, pp.2621-2627, 1993.

R. Raju, L. Raju, D. Hacker, D. Garcin, and R. Compans, Nontemplated bases at the 59 ends of Tacaribe virus mRNAs, Virology, vol.174, pp.53-59, 1990.

S. J. Polyak, S. Zheng, and D. G. Harnish, 59 termini of Pichinde arenavirus S RNAs and mRNAs contain nontemplated nucleotides, J Virol, vol.69, pp.3211-3215, 1995.

S. J. Plotch, M. Bouloy, and R. M. Krug, Transfer of 59-terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro, Proc Natl Acad Sci U S A, vol.76, pp.1618-1622, 1979.

S. J. Plotch, M. Bouloy, I. Ulmanen, and R. M. Krug, A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription, Cell, vol.23, pp.847-858, 1981.

D. H. Bishop, M. E. Gay, and Y. Matsuoko, Nonviral heterogeneous sequences are present at the 59 ends of one species of snowshoe hare bunyavirus S complementary RNA, Nucleic Acids Res, vol.11, pp.6409-6418, 1983.

A. Dias, D. Bouvier, T. Crepin, A. A. Mccarthy, and D. J. Hart, The capsnatching endonuclease of influenza virus polymerase resides in the PA subunit, Nature, vol.458, pp.914-918, 2009.

P. Yuan, M. Bartlam, Z. Lou, S. Chen, and J. Zhou, Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site, Nature, vol.458, pp.909-913, 2009.

N. Lopez, R. Jacamo, and M. T. Franze-fernandez, Transcription and RNA replication of tacaribe virus genome and antigenome analogs require N and L proteins: Z protein is an inhibitor of these processes, J Virol, vol.75, pp.12241-12251, 2001.

R. Muller, O. Poch, M. Delarue, D. H. Bishop, and M. Bouloy, Rift Valley fever virus L segment: correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases, J Gen Virol, vol.75, pp.1345-1352, 1994.

S. Vieth, A. E. Torda, M. Asper, H. Schmitz, and S. Gunther, Sequence analysis of L RNA of Lassa virus, Virology, vol.318, pp.153-168, 2004.

I. S. Lukashevich, M. Djavani, K. Shapiro, A. Sanchez, and E. Ravkov, The Lassa fever virus L gene: nucleotide sequence, comparison, and precipitation of a predicted 250 kDa protein with monospecific antiserum, J Gen Virol, vol.78, pp.547-551, 1997.

M. Wilda, N. Lopez, J. C. Casabona, and M. T. Franze-fernandez, Mapping of the tacaribe arenavirus Z-protein binding sites on the L protein identified both amino acids within the putative polymerase domain and a region at the N terminus of L that are critically involved in binding, J Virol, vol.82, pp.11454-11460, 2008.

L. Holm, S. Kaariainen, P. Rosenstrom, and A. Schenkel, Searching protein structure databases with DaliLite v, Bioinformatics, vol.3, pp.2780-2781, 2008.

S. Nichol and R. M. Elliott, Virus Taxonomy, VIIIth Report of the ICTV, pp.695-716, 2005.

M. C. Gro, D. Bonito, P. Accardi, L. Giorgi, and C. , Analysis of 39 and 59 ends of N and NSs messenger RNAs of Toscana Phlebovirus, Virology, vol.191, pp.435-438, 1992.

N. Frias-staheli, N. V. Giannakopoulos, M. Kikkert, S. L. Taylor, and A. Bridgen, Ovarian tumor domain-containing viral proteases evade ubiquitin-and ISG15-dependent innate immune responses, Cell Host Microbe, vol.2, pp.404-416, 2007.

C. Zhao, Z. Lou, Y. Guo, M. Ma, and Y. Chen, Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center, J Virol, vol.83, pp.9024-9030, 2009.

D. Garcin and D. Kolakofsky, A novel mechanism for the initiation of Tacaribe arenavirus genome replication, J Virol, vol.64, pp.6196-6203, 1990.

M. Newman, T. Strzelecka, L. F. Dorner, I. Schildkraut, and A. K. Aggarwal, Structure of restriction endonuclease BamHI and its relationship to EcoRI, Nature, vol.368, pp.660-664, 1994.

A. Pingoud, M. Fuxreiter, V. Pingoud, and W. Wende, Type II restriction endonucleases: structure and mechanism, Cell Mol Life Sci, vol.62, pp.685-707, 2005.

M. Lelke, L. Brunotte, C. Busch, and S. Gunther, An N-terminal region of Lassa virus L protein plays a critical role in transcription but not replication of the virus genome, J Virol, vol.84, pp.1934-1944, 2010.

D. Guilligay, F. Tarendeau, P. Resa-infante, R. Coloma, and T. Crepin, The structural basis for cap binding by influenza virus polymerase subunit PB2, Nat Struct Mol Biol, vol.15, pp.500-506, 2008.

J. Abraham, K. D. Corbett, M. Farzan, H. Choe, and S. C. Harrison, Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses, Nat Struct Mol Biol

E. De-clercq and J. Neyts, Avian influenza A (H5N1) infection: targets and strategies for chemotherapeutic intervention, Trends Pharmacol Sci, vol.28, pp.280-285, 2007.

H. P. Hsieh and J. T. Hsu, Strategies of development of antiviral agents directed against influenza virus replication, Curr Pharm Des, vol.13, pp.3531-3542, 2007.

K. E. Parkes, P. Ermert, J. Fassler, J. Ives, and J. A. Martin, Use of a pharmacophore model to discover a new class of influenza endonuclease inhibitors, J Med Chem, vol.46, pp.1153-1164, 2003.

H. R. Powell, The Rossmann Fourier autoindexing algorithm in MOSFLM, Acta Crystallogr D Biol Crystallogr, vol.55, pp.1690-1695, 1999.

, The CCP4 suite: programs for protein crystallography, Acta Crystallogr D Biol Crystallogr, vol.50, pp.760-763, 1994.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr D Biol Crystallogr, vol.60, pp.2126-2132, 2004.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, and Z. Zhang, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402, 1997.

R. D. Finn, J. Mistry, J. Tate, P. Coggill, and A. Heger, The Pfam protein families database, Nucleic Acids Res, vol.38, pp.211-222
URL : https://hal.archives-ouvertes.fr/hal-01294685

H. Malet, B. Coutard, S. Jamal, H. Dutartre, and N. Papageorgiou, The crystal structures of Chikungunya and Venezuelan equine encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket, J Virol, vol.83, pp.6534-6545, 2009.

M. Hass, U. Gölnitz, S. Müller, B. Becker-ziaja, and S. Günther, Replicon system for Lassa virus, J Virol, vol.78, pp.13793-13803, 2004.

U. J. Buchholz, S. Finke, and K. K. Conzelmann, Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter, J Virol, vol.73, pp.251-259, 1999.

M. Hass, M. Lelke, C. Busch, B. Becker-ziaja, and S. Günther, Mutational evidence for a structural model of the Lassa virus RNA polymerase domain and identification of two residues, Gly1394 and Asp1395, that are critical for transcription but not replication of the genome, J Virol, vol.82, pp.10207-10217, 2008.

G. Sutter, M. Ohlmann, and V. Erfle, Non-replicating vaccinia vector efficiently expresses bacteriophage T7 RNA polymerase, FEBS Lett, vol.371, pp.9-12, 1995.

W. Kabsch and . Xds, Acta Crystallogr D Biol Crystallogr, vol.66, pp.125-132

P. Evans, Scaling and assessment of data quality, Acta Crystallogr D Biol Crystallogr, vol.62, pp.72-82, 2006.

C. Vonrhein, E. Blanc, P. Roversi, and G. Bricogne, Automated structure solution with autoSHARP, Methods Mol Biol, vol.364, pp.215-230, 2007.

T. R. Schneider and G. M. Sheldrick, Substructure solution with SHELXD, Acta Crystallogr D Biol Crystallogr, vol.58, pp.1772-1779, 2002.

G. Bricogne, C. Vonrhein, C. Flensburg, M. Schiltz, and W. Paciorek, Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0, Acta Crystallogr D Biol Crystallogr, vol.59, pp.2023-2030, 2003.

K. Cowtan, An automated procedure for phase improvement by density modification, Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography, vol.31, pp.34-38, 1994.

K. Cowtan, The Buccaneer software for automated model building. 1. Tracing protein chains, Acta Crystallogr D Biol Crystallogr, vol.62, pp.1002-1011, 2006.

J. P. Abrahams and A. G. Leslie, Methods used in the structure determination of bovine mitochondrial F1 ATPase, Acta Crystallogr D Biol Crystallogr, vol.52, pp.30-42, 1996.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr D Biol Crystallogr, vol.66, pp.486-501

G. Bricogne, E. Blanc, M. Brandl, C. Flensburg, and P. Keller, BUSTER version 2.X. Global Phasing Ltd, 2010.

A. G. Leslie, MOSFLM -Recent changes and future developments, Joint CCP4 and ESF-EACBM Newsletter on Protein Crystallography, vol.35, pp.18-19, 1992.

G. N. Murshudov, A. A. Vagin, and E. J. Dodson, Refinement of macromolecular structures by the maximum-likelihood method, Acta Crystallogr D Biol Crystallogr, vol.53, pp.240-255, 1997.

O. Smart, M. Brandl, C. Flensburg, P. Keller, and W. Paciorek, Refinement with Local Structure Similarity Restraints (LSSR) Enables Exploitation of Information from Related Structures and Facilitates use of NCS, Annual Meeting of the American Crystallographic Association, 2008.

A. Shatkin, Capping of eucaryotic mRNAs, Cell, vol.9, p.645, 1976.

J. E. Darnell, Transcription units for mRNA production in eukaryotic cells and their DNA viruses

, Prog. Nucleic Acid Res. Mol. Biol, vol.22, pp.327-353, 1979.

W. Filipowicz, A protein binding the methylated 5?-terminal sequence, m 7 GpppN, of eukaryotic messenger RNA, Proc. Natl Acad. Sci. USA, vol.73, pp.1559-1563, 1976.

U. Schibler and R. P. Perry, The 5?-termini of heterogeneous nuclear RNA: a comparison among molecules of different sizes and ages, Nucleic Acids Res, vol.4, pp.4133-4149, 1977.

H. Liu and M. Kiledjian, Decapping the message: a beginning or an end, Biochem. Soc. Trans, vol.34, pp.35-38, 2006.

S. R. Nallagatla, R. Toroney, and P. C. Bevilacqua, A brilliant disguise for self RNA: 5?-end and internal modifications of primary transcripts suppress elements of innate immunity, RNA Biol, vol.5, pp.140-144, 2008.

J. Rehwinkel, RIG-I detects viral genomic RNA during negative-strand RNA virus infection, Cell, vol.140, pp.397-408, 2010.

Y. Furuichi and A. J. Shatkin, A historical and chronological perspective on the discovery of RNA capping and the structure of the RNA cap, Adv. Vir. Res, vol.55, pp.135-184, 2000.

Y. Furuichi, S. Muthukrishnan, and A. J. Shatkin, 5?-Terminal m-7 G(5?)ppp(5?)G m p in vivo: identification in reovirus genome RNA, Proc. Natl Acad. Sci. USA, vol.72, pp.742-745, 1975.

A. J. Shatkin, Methylated messenger RNA synthesis in vitro by purified reovirus, Proc. Natl Acad. Sci. USA, vol.71, pp.3204-3207, 1974.

C. M. Wei and B. Moss, Methylated nucleotides block 5?-terminus of vaccinia virus messenger RNA, Proc. Natl Acad. Sci. USA, vol.72, pp.318-322, 1975.

A. J. Shatkin and G. W. Both, Reovirus mRNA: transcription translation, Cell, vol.7, pp.305-313, 1976.

Y. Furuichi, M. Morgan, S. Muthukrishnan, and A. J. Shatkin, Reovirus messenger RNA contains a methylated, 5?-terminal structure: m 7 G(5?) ppp(5?)G m pCp-. Proc. Natl Acad. Sci. USA, vol.72, pp.362-366, 1975.

S. Muthukrishnan, G. W. Both, Y. Furuichi, and A. J. Shatkin, 5?-Terminal 7-methylguanosine in eukaryotic mRNA is required for translation, Nature, vol.255, pp.33-37, 1975.

J. Marcotrigiano, A. C. Gingras, N. Sonenberg, and S. K. Burley, Cocrystal structure of the messenger RNA 5? cap-binding protein (eIF4E) bound to 7-methyl-GDP, Cell, vol.89, pp.951-961, 1987.

K. L. Perry, K. P. Watkins, and N. Agabian, Trypanosome mRNAs have unusual "cap 4" structures acquired by addition of a spliced leader, Proc. Natl Acad. Sci. USA, vol.84, pp.8190-8194, 1987.

C. A. Beelman and R. Parker, Degradation of mRNA in eukaryotes, Cell, vol.81, pp.179-183, 1995.

J. Houseley and D. Tollervey, The many pathways of RNA degradation, Cell, vol.136, pp.763-776, 2009.

Y. Otsuka, N. L. Kedersha, and D. R. Schoenberg, Identification of a cytoplasmic complex that adds a cap onto 5?-monophosphate RNA, Mol. Cell. Biol, vol.29, pp.2155-2167, 2009.

D. R. Schoenberg and L. E. Maquat, Re-capping the message, Trends Biochem. Sci, vol.34, pp.435-442, 2009.

I. Goodfellow, Calicivirus translation initiation requires an interaction between VPg and eIF4E, EMBO Rep, vol.6, pp.968-972, 2005.

V. Ambros, R. F. Pettersson, and D. Baltimore, An enzymatic activity in uninfected cells that cleaves the linkage between poliovirion RNA and the 5? terminal protein, Cell, vol.15, pp.1439-1446, 1978.

V. Ambros and D. Baltimore, Purification and properties of a HeLa cell enzyme able to remove the 5?-terminal protein from poliovirus RNA, J. Biol. Chem, vol.255, pp.6739-6744, 1980.

P. Cong and S. Shuman, Mutational analysis of mRNA capping enzyme identifies amino acids involved in GTP binding, enzyme-guanylate formation, and GMP transfer to RNA, Mol. Cell. Biol, vol.15, pp.6222-6231, 1995.

M. De-la-peña, O. J. Kyrieleis, and S. Cusack, Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyl-transferase

, Work showing activation of the MTase domain of D1 in complex with the D12 subunit at atomic resolution, EMBO J, vol.26, pp.4913-4925, 2007.

X. Mao and S. Shuman, Intrinsic RNA (guanine-7) methyltransferase activity of the vaccinia virus capping enzyme D1 subunit is stimulated by the D12 subunit. Identification of amino acid residues in the D1 protein required for subunit association and methyl group transfer, J. Biol. Chem, vol.269, pp.24472-24479, 1994.

B. S. Schnierle, P. D. Gershon, and B. Moss, Cap-specific mRNA (nucleoside-O 2? -)-methyltransferase and poly(A) polymerase stimulatory activities of vaccinia virus are mediated by a single protein, Proc. Natl Acad. Sci. USA, vol.89, pp.2897-2901, 1992.

D. Benarroch, The RNA helicase, nucleotide 5?-triphosphatase, and RNA 5?-triphosphatase activities of Dengue virus protein NS3 are Mg 2+ -dependent and require a functional Walker B motif in the helicase catalytic core, Virology, vol.328, pp.208-218, 2004.

J. R. Myette and E. G. Niles, Characterization of the vaccinia virus RNA 5?-triphosphatase and nucleotide triphosphate phosphohydrolase activities demonstrate that both activities are carried out at the same active site, J. Biol. Chem, vol.271, pp.11945-11952, 1996.

R. Vasquez-del-carpio, F. D. Gonzalez-nilo, G. Riadi, Z. F. Taraporewala, and J. T. Patton, Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities, J. Mol. Biol, vol.362, pp.539-554, 2006.

H. Jayaram, Z. Taraporewala, J. T. Patton, and B. V. Prasad, Rotavirus protein involved in genome replication and packaging exhibits a HIT-like fold, The first crystal structure of an RTPase with a HIT-like fold, vol.417, pp.311-315, 2002.

Z. Taraporewala, D. Chen, and J. T. Patton, Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity, J. Virol, vol.73, pp.9934-9943, 1999.

Z. F. Taraporewala and J. T. Patton, Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2, J. Virol, vol.75, pp.4519-4527, 2001.

D. Benarroch, P. Smith, and S. Shuman, Characterization of a trifunctional mimivirus mRNA capping enzyme and crystal structure of the RNA triphosphatase domain, Structure, vol.16, pp.501-512, 2008.

M. Gu and C. D. Lima, Processing the message: structural insights into capping and decapping mRNA, Curr. Opin. Struc. Biol, vol.15, pp.99-106, 2005.

C. D. Lima, L. K. Wang, and S. Shuman, Structure and mechanism of yeast RNA triphosphatase: an essential component of the mRNA capping apparatus, Cell, vol.99, pp.533-543, 1999.

S. Shuman, Structure, mechanism, and evolution of the mRNA capping apparatus, Prog. Nucleic Acid Res

, Mol. Biol, vol.66, pp.1-40, 2001.

K. Lehman, B. Schwer, C. K. Ho, I. Rouzankina, and S. Shuman, A conserved domain of yeast RNA triphosphatase flanking the catalytic core regulates self-association and interaction with the guanylyltransferase component of the mRNA capping apparatus, J. Biol. Chem, vol.274, pp.22668-22678, 1999.

A. E. Gorbalenya and E. V. Koonin, One more conserved sequence motif in helicases, Nucleic Acids Res, vol.16, p.7734, 1988.

A. E. Gorbalenya and E. V. Koonin, Viral proteins containing the purine NTP-binding sequence pattern, Nucleic Acids Res, vol.17, pp.8413-8440, 1989.

A. E. Gorbalenya, E. V. Koonin, A. P. Donchenko, and V. M. Blinov, Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes, Nucleic Acids Res, vol.17, pp.4713-4730, 1989.

D. Luo, Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein, EMBO J, vol.27, pp.3209-3219, 2008.

M. Gu and C. M. Rice, Three conformational snapshots of the hepatitis C virus NS3 helicase reveal a ratchet translocation mechanism, Proc. Natl Acad. Sci. USA, vol.107, pp.521-528, 2010.

J. Lescar, Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target, Antiviral Res, vol.80, pp.94-101, 2008.

D. Luo, Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications, J Biol. Chem, vol.285, pp.18817-18827, 2010.

D. Luo, Crystal structure of the NS3 proteasehelicase from dengue virus, J. Virol, vol.82, pp.173-183, 2008.

A. Sampath, Structure-based mutational analysis of the NS3 helicase from dengue virus, J. Virol, vol.80, pp.6686-6690, 2006.

G. Balistreri, J. Caldentey, L. Kääriäinen, and T. Ahola, Enzymatic defects of the nsP2 proteins of Semliki Forest virus temperature-sensitive mutants, J Virol, vol.81, pp.2849-2860, 2007.

A. Changela, C. K. Ho, A. Martins, S. Shuman, and A. Mondragón, Structure and mechanism of the RNA triphosphatase component of mammalian mRNA capping enzyme, EMBO J, vol.20, pp.2575-2586, 2001.

T. Takagi, C. R. Moore, F. Diehn, and S. Buratowski, An RNA 5?-triphosphatase related to the protein tyrosine phosphatases, Cell, vol.89, pp.867-873, 1997.

S. Shuman and C. D. Lima, The polynucleotide ligase and RNA capping enzyme superfamily of covalent nucleotidyltransferases, Curr. Opin. Struct. Biol, vol.14, pp.757-764, 2004.

S. P. Wang, L. Deng, C. K. Ho, and S. Shuman, Phylogeny of mRNA capping enzymes, Proc. Natl Acad. Sci. USA, vol.94, pp.9573-9578, 1997.

P. Cong and S. Shuman, Covalent catalysis in nucleotidyl transfer. A KTDG motif essential for enzyme-GMP complex formation by mRNA capping enzyme is conserved at the active sites of RNA and DNA ligases

, J. Biol. Chem, vol.268, pp.7256-7260, 1993.

E. G. Niles and L. Christen, Identification of the vaccinia virus mRNA guanyltransferase active site lysine

, J. Biol. Chem, vol.268, pp.24986-24989, 1993.

S. Shuman and J. Hurwitz, Mechanism of mRNA capping by vaccinia virus guanylyltransferase: characterization of an enzyme-guanylate intermediate, Proc. Natl Acad. Sci. USA, vol.78, pp.187-191, 1981.

B. Schwer and S. Shuman, Mutational analysis of yeast mRNA capping enzyme, Proc. Natl Acad. Sci. USA, vol.91, pp.4328-4332, 1994.

T. Lindahl, D. E. Barnes, . Mammalian, and . Ligases, Annu. Rev. Biochem, vol.61, pp.251-281, 1992.

C. Chu, Structure of the guanylyltransferase domain of human mRNA capping enzyme, Proc. Natl Acad. Sci. USA, vol.108, pp.10104-10108, 2011.

C. Fabrega, V. Shen, S. Shuman, and C. D. Lima, Structure of an mRNA capping enzyme bound to the phosphorylated carboxy-terminal domain of RNA polymerase II, Mol. Cell, vol.11, pp.1549-1561, 2003.

K. Håkansson, A. J. Doherty, S. Shuman, and D. B. Wigley, X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes, Cell, vol.89, pp.545-553, 1997.

K. Håkansson and D. B. Wigley, Structure of a complex between a cap analogue and mRNA guanylyl transferase demonstrates the structural chemistry of RNA capping, Proc. Natl Acad. Sci. USA, vol.95, pp.1505-1510, 1998.

K. M. Reinisch, M. L. Nibert, and S. C. Harrison, A report detailing the complete orthoreoviral RNA cap assembly line at atomic resolution, Nature, vol.404, pp.960-967, 2000.

G. Sutton, J. M. Grimes, D. I. Stuart, and P. Roy, Bluetongue virus VP4 is an RNA-capping assembly line, Nature Struct. Mol. Biol, vol.14, pp.449-451, 2007.

L. Cheng, Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping, Proc. Natl Acad. Sci. USA, vol.108, pp.1373-1378, 2011.

J. Kim, Y. Tao, K. M. Reinisch, S. C. Harrison, and M. L. Nibert, Orthoreovirus and Aquareovirus core proteins: conserved enzymatic surfaces, but not protein-protein interfaces, Virus Res, vol.101, pp.15-28, 2004.

C. L. Luongo, K. M. Reinisch, S. C. Harrison, and M. L. Nibert, Identification of the guanylyltransferase region and active site in reovirus mRNA capping protein ?2, J. Biol. Chem, vol.275, pp.2804-2810, 2000.

M. Issur, The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure, RNA, vol.15, pp.2340-2350, 2009.

M. Bisaillon and G. Lemay, Viral and cellular enzymes involved in synthesis of mRNA cap structure, Virology, vol.236, pp.1-7, 1997.

M. P. Egloff, D. Benarroch, B. Selisko, J. L. Romette, and B. Canard, An RNA cap (nucleoside-2?-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization

, Characterization of the first (+)RNA virus MTase at atomic resolution, EMBO J, vol.21, pp.2757-2768, 2002.

J. L. Martin and F. M. Mcmillan, SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold, Curr. Opin. Struct. Biol, vol.12, pp.783-793, 2002.

H. Schubert, Many paths to methyltransfer: a chronicle of convergence, Trends Biochem. Sci, vol.28, pp.329-335, 2003.

E. Decroly, Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2?-O-methyltransferase nsp10/nsp16 complex, PLoS Pathog, vol.7, p.1002059, 2011.

M. P. Egloff, Structural and functional analysis of methylation and 5?-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5, J. Mol. Biol, vol.372, pp.723-736, 2007.

H. Dong, S. Ren, H. Li, and P. Y. Shi, Separate molecules of West Nile virus methyltransferase can independently catalyze the N7 and 2?-O methylations of viral RNA cap, Virology, vol.377, pp.1-6, 2008.

D. Ray, West Nile virus 5?-cap structure is formed by sequential guanine N-7 and ribose 2?-O methylations by nonstructural protein 5, J. Virol, vol.80, pp.8362-8370, 2006.

C. Fabrega, S. Hausmann, V. Shen, S. Shuman, and C. D. Lima, Structure and mechanism of mRNA cap (guanine-N7) methyltransferase, Mol. Cell, vol.13, pp.77-89, 2004.

J. M. Bujnicki and L. Rychlewski, Reassignment of specificities of two cap methyltransferase domains in the reovirus ?2 protein, Genome Biol, vol.2, 2001.

F. Ferron, S. Longhi, B. Henrissat, and B. Canard, Viral RNA-polymerases -a predicted 2?-O-ribose methyltransferase domain shared by all Mononegavirales, Trends Biochem. Sci, vol.27, pp.222-224, 2002.

A. E. Hodel, P. D. Gershon, X. Shi, and F. A. Quiocho, The 1.85 Å structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends, Cell, vol.85, pp.247-256, 1996.

S. W. Lockless, H. T. Cheng, A. E. Hodel, F. A. Quiocho, and P. D. Gershon, Recognition of capped RNA substrates by VP39, the vaccinia virus-encoded mRNA cap-specific 2?-O-methyltransferase, Biochemistry, vol.37, pp.8564-8574, 1998.

C. Li, Y. Xia, X. Gao, and P. D. Gershon, Mechanism of RNA 2?-O-methylation: evidence that the catalytic lysine acts to steer rather than deprotonate the target nucleophile, Biochemistry, vol.43, pp.5680-5687, 2004.

A. E. Hodel, P. D. Gershon, and F. A. Quiocho, An article discussing the molecular basis of N7-methylated-cap selectivity and detailing the first RNA, Mol. Cell, vol.1, pp.443-447, 1998.

M. Bouvet, In vitro reconstitution of SARScoronavirus mRNA cap methylation, PLoS Pathog, vol.6, p.1000863, 2010.

Y. Chen, Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase, Proc. Natl Acad. Sci USA, vol.106, pp.3484-3489, 2009.

E. Decroly, Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2?O)-methyltransferase activity, J. Virol, vol.82, pp.8071-8084, 2008.

N. Ramadevi, N. J. Burroughs, P. P. Mertens, I. M. Jones, and P. Roy, Capping and methylation of mRNA by purified recombinant VP4 protein of bluetongue virus, Proc. Natl Acad. Sci. USA, vol.95, pp.13537-13542, 1998.

N. Ramadevi and P. Roy, Bluetongue virus core protein VP4 has nucleoside triphosphate phosphohydrolase activity, J. Gen. Virol, vol.79, pp.2475-2480, 1998.

G. Abraham, D. P. Rhodes, and A. K. Banerjee, The 5? terminal structure of the methylated mRNA synthesized in vitro by vesicular stomatitis virus, Cell, vol.5, pp.51-58, 1975.

G. Abraham, D. P. Rhodes, and A. K. Banerjee, Novel initiation of RNA synthesis in vitro by vesicular stomatitis virus, Nature, vol.255, pp.37-40, 1975.

K. C. Gupta and P. Roy, Alternate capping mechanisms for transcription of spring viremia of carp virus: evidence for independent mRNA initiation, J. Virol, vol.33, pp.292-303, 1980.

S. Barik, The structure of the 5? terminal cap of the respiratory syncytial virus mRNA, J. Gen. Virol, vol.74, pp.485-490, 1993.

T. Ogino and A. K. Banerjee, The HR motif in the RNAdependent RNA polymerase L protein of Chandipura virus is required for unconventional mRNA-capping activity, J. Gen. Virol, vol.91, pp.1311-1314, 2010.

T. Ogino and A. K. Banerjee, Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus, Mol. Cell, vol.25, pp.85-97, 2007.

J. M. Bujnicki and L. Rychlewski, In silico identification, structure prediction and phylogenetic analysis of the 2?-O-ribose (cap 1) methyltransferase domain in the large structural protein of ssRNA negative-strand viruses, Protein Eng, vol.15, pp.101-108, 2002.

J. Li, E. C. Fontaine-rodriguez, and S. P. Whelan, Amino acid residues within conserved domain VI of the vesicular stomatitis virus large polymerase protein essential for mRNA cap methyltransferase activity

, J. Virol, vol.79, pp.13373-13384, 2005.

A. A. Rahmeh, J. Li, P. J. Kranzusch, and S. P. Whelan, Ribose 2?-O methylation of the vesicular stomatitis virus mRNA cap precedes and facilitates subsequent guanine-N-7 methylation by the large polymerase protein, J. Virol, vol.83, pp.11043-11050, 2009.

, A paper with significant implications for understanding the mechanisms of unconventional capping in VSV. The authors show the sequence requirements for methylation and the chain of events that characterize the mechanism

D. Testa and A. K. Banerjee, Two methyltransferase activities in the purified virions of vesicular stomatitis virus, J. Virol, vol.24, pp.786-793, 1977.

G. Tekes, A. A. Rahmeh, and S. P. Whelan, A freeze frame view of vesicular stomatitis virus transcription defines a minimal length of RNA for 5? processing

, PLoS Pathog, vol.7, p.1002073, 2011.

T. Ahola and L. Kääriäinen, Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP, which guanine-N7 methylation of GTP precedes m 7 GMP transfer onto the putative GTase, vol.92, p.1, 1995.

L. Vasiljeva, A. Merits, P. Auvinen, and L. Kääriäinen, Identification of a novel function of the alphavirus capping apparatus. RNA 5?-triphosphatase activity of Nsp2, J. Biol. Chem, vol.275, pp.17281-17287, 2000.

T. Ahola, P. Laakkonen, H. Vihinen, and L. Kääriäinen, Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities, J. Virol, vol.71, pp.392-397, 1997.

Y. I. Li, Y. J. Chen, Y. H. Hsu, and M. Meng, Characterization of the AdoMet-dependent guanylyltransferase activity that is associated with the N terminus of bamboo mosaic virus replicase, J. Virol, vol.75, pp.782-788, 2001.

A. Merits, Virus-specific capping of tobacco mosaic virus RNA: methylation of GTP prior to formation of covalent complex p126-m 7GMP, FEBS Lett, vol.455, pp.45-48, 1999.

J. Magden, Virus-specific mRNA capping enzyme encoded by hepatitis E virus, J. Virol, vol.75, pp.6249-6255, 2001.

M. Bouloy, S. J. Plotch, and R. M. Krug, Globin mRNAs are primers for the transcription of influenza viral RNA in vitro, Proc. Natl Acad. Sci. USA, vol.75, pp.4886-4890, 1978.

A. J. Caton and S. Robertson, Structure of the hostderived sequences present at the 5? ends of influenza virus mRNA, Nucleic Acids Res, vol.8, pp.2591-2603, 1980.

S. J. Plotch, M. Bouloy, and R. M. Krug, Transfer of 5?-terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro, Proc. Natl Acad. Sci. USA, vol.76, pp.1618-1622, 1979.

X. Qi, Cap binding and immune evasion revealed by Lassa nucleoprotein structure, Nature, vol.468, pp.779-783, 2010.

D. H. Bishop, M. E. Gay, and Y. Matsuoko, Non Viral heterogeneous sequences are present at the 5? ends of one species of snowshoe hare bunyavirus S. complementary RNA, Nucleic Acids Res, vol.11, pp.6409-6418, 1983.

M. Bouloy, N. Pardigon, P. Vialat, S. Gerbaud, and M. Girard, Characterization of the 5? and 3? ends of viral messenger RNAs isolated from BHK21 cells infected with Germiston virus (Bunyavirus), Virology, vol.175, pp.50-58, 1990.
URL : https://hal.archives-ouvertes.fr/pasteur-01659385

Y. Eshita, B. Ericson, V. Romanowski, and D. H. Bishop, Analyses of the mRNA transcription processes of snowshoe hare bunyavirus S and M RNA species

, J. Virol, vol.55, pp.681-689, 1985.

J. L. Patterson, B. Holloway, D. Kolakofsky, and . La, Crosse virions contain a primer-stimulated RNA polymerase and a methylated cap-dependent endonuclease, J. Virol, vol.52, pp.215-222, 1984.

D. Garcin, The 5? ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis, J. Virol, vol.69, pp.5754-5762, 1995.

H. Jin and R. M. Elliott, Non-viral sequences at the 5? ends of Dugbe nairovirus S mRNAs, J. Gen. Virol, vol.74, pp.2293-2297, 1993.

R. Raju, Nontemplated bases at the 5?ends of Tacaribe virus mRNAs, Virology, vol.174, pp.53-59, 1990.

F. Weber, O. Haller, and G. Kochs, Nucleoprotein viral RNA and mRNA of Thogoto virus: a novel" capstealing" mechanism in tick-borne orthomyxoviruses?, J. Virol, vol.70, pp.8361-8367, 1996.

M. B. Leahy, J. T. Dessens, and P. A. Nuttall, In vitro polymerase activity of Thogoto virus: evidence for a unique cap-snatching mechanism in a tick-borne orthomyxovirus, J. Virol, vol.71, pp.8347-8351, 1997.

D. Guilligay, The structural basis for cap binding by influenza virus polymerase subunit PB2, Nature Struct. Mol. Biol, vol.15, pp.500-506, 2008.

A. Dias, The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit, Nature, vol.458, pp.914-918, 2009.

P. Yuan, Together with reference 119, this paper describes the structural and functional characterization of the cap-snatching endonuclease, Nature, vol.458, pp.909-913, 2009.

T. Crépin, Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit, J. Virol, vol.84, pp.9096-9104, 2010.

J. Reguera, F. Weber, and S. Cusack, Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenzalike endonuclease domain, essential for viral capdependent transcription, PLoS Pathog, vol.6, p.1001101, 2010.

B. Morin, The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription, PLoS Pathog, vol.6, p.1001038, 2010.

M. Lelke, L. Brunotte, C. Busch, and S. Günther, An N-terminal region of Lassa virus L protein plays a critical role in transcription but not replication of the virus genome, J. Virol, vol.84, pp.1934-1944, 2010.

P. J. Kranzusch, Assembly of a functional Machupo virus polymerase complex, Proc. Natl Acad. Sci. USA, vol.107, 2010.

R. W. Ruigrok, T. Crépin, D. J. Hart, and S. Cusack, Towards an atomic resolution understanding of the influenza virus replication machinery, Curr. Opin. Struct. Biol, vol.20, pp.104-113, 2010.

K. M. Hastie, C. R. Kimberlin, M. A. Zandonatti, I. J. Macrae, and E. O. Saphire, Structure of the Lassa virus nucleoprotein reveals a dsRNA-specific 3? to 5? exonuclease activity essential for immune suppression, Proc. Natl Acad. Sci. USA, vol.108, pp.2396-2401, 2011.

M. A. Mir, W. A. Duran, B. L. Hjelle, C. Ye, and A. T. Panganiban, An article that casts light on how N protein binds preferentially to capped mRNAs, stores and protects these mRNAs in P-bodies, Proc. Natl Acad. Sci. USA, vol.105, pp.19294-19299, 2008.

F. Ferron, The hexamer structure of the rift valley fever virus nucleoprotein suggests a mechanism for its assembly into ribonucleoprotein complexes, PLoS Pathog, vol.7, p.1002030, 2011.

S. Koyama, K. J. Ishii, C. Coban, and S. Akira, Innate immune response to viral infection, Cytokine, vol.43, pp.336-341, 2008.

O. Takeuchi and S. Akira, Recognition of viruses by innate immunity, Immunol. Rev, vol.220, pp.214-224, 2007.

C. Wilkins and M. Gale, Jr Recognition of viruses by cytoplasmic sensors, Curr. Opin. Immunol, vol.22, pp.41-47, 2010.

M. Yoneyama and T. Fujita, Recognition of viral nucleic acids in innate immunity, Rev. Med. Virol, vol.20, pp.4-22, 2010.

K. Brennan and A. G. Bowie, Activation of host pattern recognition receptors by viruses, Curr. Opin. Microbiol, vol.13, pp.503-507, 2010.

J. D. Hansen, L. N. Vojtech, and K. J. Laing, Sensing disease and danger: a survey of vertebrate PRRs and their origins, Dev. Comp. Immunol, vol.35, pp.886-897, 2011.

E. Meylan, J. Tschopp, and M. Karin, Intracellular pattern recognition receptors in the host response, Nature, vol.442, pp.39-44, 2006.

S. S. Diebold, T. Kaisho, H. Hemmi, S. Akira, and C. Reis-e-sousa, Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA, Science, vol.303, pp.1529-1531, 2004.

R. Züst, The authors show for the first time the role of 2?-O-methylation in the sensing of self RNA by the innate immune system through the RNA sensor MDA5, Nature Immunol, vol.12, pp.137-143, 2011.

H. Oshiumi, K. Sakai, M. Matsumoto, and T. Seya, DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-?-inducing potential

, Eur. J. Immunol, vol.40, pp.940-948, 2010.

A. Pichlmair, RIG-I-mediated antiviral responses to single-stranded RNA bearing 5?-phosphates, Science, vol.314, pp.997-1001, 2006.

, The 5?-triphosphate of viral RNA is identified as a major component in the RIG-I-mediated host innate immune response

A. Schmidt, 5?-triphosphate RNA requires basepaired structures to activate antiviral signaling via RIG-I, Proc. Natl Acad. Sci. USA, vol.106, pp.12067-12072, 2009.

Y. Wang, Structural and functional insights into 5?-ppp RNA pattern recognition by the innate immune receptor RIG-I, Nature Struct. Mol. Biol, vol.17, pp.781-787, 2010.

P. Luthra, D. Sun, R. H. Silverman, and B. He, Activation of IFN-? expression by a viral mRNA through RNase L and MDA5, Proc. Natl Acad. Sci. USA, vol.108, pp.2118-2123, 2011.

X. Li, Structural basis of double-stranded RNA recognition by the RIG-I like receptor MDA5, Arch. Biochem. Biophys, vol.488, pp.23-33, 2009.

S. Daffis, The authors demonstrate that 2?-O-methylation of the viral RNA cap evades host innate antiviral responses through escape of IFIT-mediated suppression, Nature, vol.468, pp.452-456, 2010.

A. Pichlmair, IFIT1 is an antiviral protein that recognizes 5?-triphosphate RNA, Nature Immunol, vol.12, pp.624-630, 2011.

D. Garcin and D. Kolakofsky, A novel mechanism for the initiation of Tacaribe arenavirus genome replication

, J. Virol, vol.64, pp.6196-6203, 1990.

Z. Hong and C. E. Cameron, Pleiotropic mechanisms of ribavirin antiviral activities, Prog. Drug Res, vol.59, pp.41-69, 2002.

J. Magden, L. Kääriäinen, and T. Ahola, Inhibitors of virus replication: recent developments and prospects

, Appl. Microbiol. Biotechnol, vol.66, pp.612-621, 2005.

S. P. Lim, Small molecule inhibitors that selectively block dengue virus methyltransferase

, J. Biol. Chem, vol.286, pp.6233-6240, 2011.

T. Kuzuhara, Y. Iwai, H. Takahashi, D. Hatakeyama, and N. Echigo, Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase, PLoS Curr, vol.1, p.1052, 2009.

K. E. Parkes, Use of a pharmacophore model to discover a new class of influenza endonuclease inhibitors, J. Med. Chem, vol.46, pp.1153-1164, 2003.

J. Tomassini, Inhibition of cap (m 7 GpppXm)-dependent endonuclease of influenza virus by 4-substituted 2,4-dioxobutanoic acid compounds, Antimicrob. Agents Chemother, vol.38, pp.2827-2837, 1994.

L. Balvay, R. Soto-rifo, E. P. Ricci, D. Decimo, and T. Ohlmann, Structural and functional diversity of viral IRESes, Biochim. Biophys. Acta, vol.1789, pp.542-557, 2009.

L. G. Guidotti and F. V. Chisari, Noncytolytic control of viral infections by the innate and adaptive immune response, Annu. Rev. Immunol, vol.19, pp.65-91, 2001.

L. Malmgaard, Induction and regulation of IFNs during viral infections, J. Interferon Cytokine Res, vol.24, pp.439-454, 2004.

U. Garaigorta and F. V. Chisari, Hepatitis C virus blocks interferon effector function by inducing protein kinase R phosphorylation, Cell Host Microbe, vol.6, pp.513-522, 2009.

A. Blanc, C. Goyer, and N. Sonenberg, The coat protein of the yeast double-stranded RNA virus L-A attaches covalently to the cap structure of eukaryotic mRNA

, Mol. Cell. Biol, vol.12, pp.3390-3398, 1992.

H. Naitow, J. Tang, M. Canady, R. B. Wickner, and J. E. Johnson, L-A virus at 3.4 Å resolution reveals particle architecture and mRNA decapping mechanism, Nature Struct. Biol, vol.9, pp.725-728, 2002.

S. Parrish, W. Resch, and B. Moss, Vaccinia virus D10 protein has mRNA decapping activity, providing a mechanism for control of host and viral gene expression, Proc. Natl Acad. Sci. USA, vol.104, pp.2139-2144, 2007.

A. G. Mclennan, Decapitation: poxvirus makes RNA lose its head, Trends Biochem. Sci, vol.32, pp.297-299, 2007.

M. M. Gaglia and B. A. Glaunsinger, Viruses and the cellular RNA decay machinery, Wiley Interdiscip. Rev. RNA, vol.1, pp.47-59, 2010.

P. Tompa, Intrinsically unstructured proteins, Trends Biochem Sci, vol.27, pp.527-533, 2002.

V. Receveur-bréchot, J. M. Bourhis, V. N. Uversky, B. Canard, and S. Longhi, Assessing protein disorder and induced folding, Proteins Struct Funct Bioinformat, vol.62, pp.24-45, 2006.

V. N. Uversky, Natively unfolded proteins: a point where biology waits for physics, Protein Sci, vol.11, pp.739-756, 2002.

L. M. Iyer, L. Aravind, P. Bork, K. Hofmann, A. R. Mushegian et al., Quoderat demonstrandum? The mystery of experimental validation of apparently erroneous computational analyses of protein sequences, Genome Biol, vol.2, p.51, 2001.

P. Puntervoll, R. Linding, C. Gemund, S. Chabanis-davidson, M. Mattingsdal et al., ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins, Nucleic Acids Res, vol.31, pp.3625-3630, 2003.

R. Linding, Linear functional modules. Implication for protein function, 2004.

V. Neduva, R. Linding, I. Su-angrand, A. Stark, F. D. Masi et al., Systematic discovery of new recognition peptides mediating protein interaction networks, PLoS Biol, vol.3, p.405, 2005.

I. Friedberg, L. Jaroszewski, Y. Ye, and A. Godzik, The interplay of fold recognition and experimental structure determination in structural genomics, Curr Opin Struct Biol, vol.14, pp.307-312, 2004.

E. Melamud and J. Moult, Evaluation of disorder predictions in CASP5, Proteins, vol.53, issue.6, pp.561-565, 2003.

Z. Obradovic, K. Peng, S. Vucetic, P. Radivojac, and A. K. Dunker, Exploiting heterogeneous sequence properties improves prediction of protein disorder, Proteins, vol.61, pp.166-182, 2005.

Z. Dosztanyi, V. Csizmok, P. Tompa, and I. Simon, The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins, J Mol Biol, vol.347, pp.827-839, 2005.

D. Karlin, F. Ferron, B. Canard, and S. Longhi, Structural disorder and modular organization in Paramyxovirinae N and P, J Gen Virol, vol.84, pp.3239-3252, 2003.

F. Ferron, C. Rancurel, S. Longhi, C. Cambillau, B. Henrissat et al., VaZyMolO: a tool to define and classify modularity in viral proteins, J Gen Virol, vol.86, pp.743-749, 2005.

W. Severson, X. Xu, M. Kuhn, N. Senutovitch, M. Thokala et al., Essential amino acids of the hantaan virus N protein in its interaction with RNA, J Virol, vol.79, pp.10032-10039, 2005.

F. P. Ferron, Approches bioinformatiques et structurales des réplicase virales, 2005.

M. T. Llorente, B. Barreno-garcia, M. Calero, E. Camafeita, J. A. Lopez et al., Structural analysis of the human respiratory syncitial virus phosphoprotein: characterization of an a-helical domain involved in oligomerization

, J Gen Virol, vol.87, pp.159-169, 2006.

A. K. Dunker, J. D. Lawson, C. J. Brown, R. M. Williams, P. Romero et al., Obradovic Z. Intrinsically disordered protein. J Mol Graph Model, vol.19, pp.26-59, 2001.

R. Linding, R. B. Russell, V. Neduva, T. J. Gibson, and . Globplot, Exploring protein sequences for globularity and disorder, Nucleic Acids Res, vol.31, pp.3701-3708, 2003.

M. P. Egloff, D. Benarroch, B. Selisko, J. L. Romette, and B. Canard, An RNA cap (nucleoside-2?-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization, EMBO J, vol.21, pp.2757-2768, 2002.

E. A. Weathers, M. E. Paulaitis, T. B. Woolf, and J. H. Hoh, Reduced amino acid alphabet is sufficient to accurately recognize intrinsically disordered protein, FEBS Lett, vol.576, pp.348-352, 2004.

E. Koonin and M. Galperin, Sequence-evolution-function: computational approaches in comparative genomics, 2003.

J. Liu, H. Tan, and B. Rost, Loopy proteins appear conserved in evolution, J Mol Biol, vol.322, pp.53-64, 2002.

P. Romero, Z. Obradovic, X. Li, E. C. Garner, C. J. Brown et al., Sequence complexity of disordered protein, Proteins, vol.42, pp.38-48, 2001.

J. C. Wootton, Non-globular domains in protein sequences: automated segmentation using complexity measures, Comput Chem, vol.18, pp.269-285, 1994.

M. R. Dyson, S. P. Shadbolt, K. J. Vincent, R. L. Perera, and J. Mccafferty, Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression, BMC Biotechnol, vol.4, p.32, 2004.

D. Karlin, S. Longhi, V. Receveur, and B. Canard, The N-terminal domain of the phosphoprotein of morbilliviruses belongs to the natively unfolded class of proteins, Virology, vol.296, pp.251-262, 2002.

S. Longhi, V. Receveur-brechot, D. Karlin, K. Johansson, H. Darbon et al., The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein

, J Biol Chem, vol.278, pp.18638-18648, 2003.

R. Linding, J. Schymkowitz, F. Rousseau, F. Diella, and L. Serrano, A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins, J Mol Biol, vol.342, pp.345-353, 2004.

G. G. Tartaglia, R. Pellarin, A. Cavalli, and A. Caflisch, Organism complexity anti-correlates with proteomic beta-aggregation propensity, Protein Sci, vol.14, pp.2735-2740, 2005.

B. Berger, D. B. Wilson, E. Wolf, T. Tonchev, M. Milla et al., Predicting coiled coils by use of pairwise residue correlations, Proc Natl Acad Sci, vol.92, pp.8259-8263, 1995.

E. Wolf, P. S. Kim, and B. Berger, MultiCoil: a program for predicting two-and three-stranded coiled coils, Protein Sci, vol.6, pp.1179-1189, 1997.

C. J. Brown, S. Takayama, A. M. Campen, P. Vise, T. W. Marshall et al., Keith Dunker A. Evolutionary rate heterogeneity in proteins with long disordered regions, J Mol Evol, vol.55, pp.104-110, 2002.

L. D. Hurst, The Ka/Ks ratio: diagnosing the form of sequence evolution, Trends Genet, vol.18, p.486, 2002.

C. J. Oldfield, Y. Cheng, M. S. Cortese, C. J. Brown, V. N. Uversky et al., Comparing and combining predictors of mostly disordered proteins, Biochemistry, vol.44, pp.1989-2000, 2005.

S. Vucetic, Z. Obradovic, V. Vacic, P. Radivojac, K. Peng et al., DisProt: a database of protein disorder, Bioinformatics, vol.21, pp.137-140, 2005.

A. Fernandez and R. S. Berry, Molecular dimension explored in evolution to promote proteomic complexity, Proc Natl Acad Sci, vol.101, pp.13460-13465, 2004.

A. Fernandez, R. Scott, and R. S. Berry, The nonconserved wrapping of conserved protein folds reveals a trend toward increasing connectivity in proteomic networks, Proc Natl Acad Sci, vol.101, pp.2823-2827, 2004.

W. Kabsch and C. Sander, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, vol.22, pp.2577-2637, 1983.

S. O. Garbuzynskiy, M. Y. Lobanov, and O. V. Galzitskaya, To be folded or to be unfolded?, Protein Sci, vol.13, pp.2871-2877, 2004.

I. Callebaut, J. C. Courvalin, H. J. Worman, and J. P. Mornon, Hydrophobic cluster analysis reveals a third chromodomain in the Tetrahymena Pdd1p protein of the chromo superfamily, Biochem Biophys Res Commun, vol.235, pp.103-107, 1997.

Y. Jin and R. L. Dunbrack, Assessment of disorder predictions in CASP6, Proteins, vol.61, pp.167-175, 2005.

K. Coeytaux and A. Poupon, Prediction of unfolded segments in a protein sequence based on amino acid composition, Bioinformatics, vol.21, pp.1891-1900, 2005.

Z. Dosztanyi, V. Csizmok, P. Tompa, and I. Simon, IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content, Bioinformatics, vol.21, pp.3433-3434, 2005.

Z. R. Yang, R. Thomson, P. Mcneil, and R. M. Esnouf, RONN: the bio-basis function neural network technique applied to the detection of natively disordered regions in proteins, Bioinformatics, vol.21, pp.3369-3376, 2005.

K. Johansson, J. M. Bourhis, V. Campanacci, C. Cambillau, B. Canard et al., Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein, J Biol Chem, vol.278, pp.44567-44573, 2003.

J. M. Bourhis, K. Johansson, V. Receveur-brechot, C. J. Oldfield, K. A. Dunker et al., The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon binding to their physiological partner, Virus Res, vol.99, pp.157-167, 2004.

R. L. Kingston, W. A. Baase, and L. S. Gay, Characterization of nucleocapsid binding by the measles virus and mumps virus phosphoproteins, J Virol, vol.78, pp.8630-8640, 2004.

E. Garner, P. Romero, A. K. Dunker, C. Brown, and Z. Obradovic, Predicting binding regions within disordered proteins, Genome Inform Ser Workshop Genome Inform, vol.10, pp.41-50, 1999.

A. J. Callaghan, J. P. Aurikko, L. L. Ilag, J. Gunter-grossmann, V. Chandran et al., Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E, J Mol Biol, vol.340, pp.965-979, 2004.

C. J. Oldfield, Y. Cheng, M. S. Cortese, P. Romero, V. N. Uversky et al., Coupled folding and binding with alpha-helixforming molecular recognition elements, Biochemistry, vol.44, pp.12454-12470, 2005.

M. R. Wilkins, E. Gasteiger, A. Bairoch, J. C. Sanchez, K. L. Williams et al., Protein identification and analysis tools in the ExPASy server, Methods Mol Biol, vol.112, pp.531-552, 1999.

E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel et al., ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Res, vol.31, pp.3784-3788, 2003.

E. Bornberg-bauer, E. Rivals, and M. Vingron, Computational approaches to identify leucine zippers, Nucleic Acids Res, vol.26, pp.2740-2746, 1998.

A. Lupas, Prediction and analysis of coiled-coil structures, Methods Enzymol, vol.266, pp.513-525, 1996.

A. Lupas, M. Van-dyke, and J. Stock, Predicting coiled coils from protein sequences, Science, vol.252, pp.1162-1164, 1991.

A. Lupas, Predicting coiled-coil regions in proteins, Curr Opin Struct Biol, vol.7, pp.388-393, 1997.

P. Baldi, J. Cheng, and A. Vullo, Large-scale prediction of disulphide bond connectivity, Adv Neural Inf Process Syst, vol.17, pp.97-104, 2004.

V. N. Uversky, J. R. Gillespie, and A. L. Fink, Why are "natively unfolded" proteins unstructured under physiologic conditions?, Proteins, vol.41, pp.415-427, 2000.

L. J. Tai, S. M. Mcfall, K. Huang, B. Demeler, S. G. Fox et al., Structure-function analysis of the heat shock factor-binding protein reveals a protein composed solely of a highly conserved and dynamic coiled-coil trimerization domain, J Biol Chem, vol.277, pp.735-745, 2002.

D. Karlin, S. Longhi, and B. Canard, Substitution of two residues in the measles virus nucleoprotein results in an impaired self-association, Virology, vol.302, pp.420-432, 2002.

S. Longhi, V. Receveur-brechot, D. Karlin, K. Johansson, H. Darbon et al., The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein

, J Biol Chem, vol.278, pp.18638-18648, 2003.

P. Giraudon, M. F. Jacquier, and T. F. Wild, Antigenic analysis of African measles virus field isolates: identification and localisation of one conserved and two variable epitope sites on the NP protein, Virus Res, vol.10, pp.137-152, 1988.

K. J. Walters, M. F. Kleijnen, A. M. Goh, G. Wagner, and P. M. Howley, Structural studies of the interaction between ubiquitin family proteins and proteasome subunit S5a, Biochemistry, vol.41, pp.1767-1777, 2002.

K. P. Rabitsch, J. Gregan, A. Schleiffer, J. P. Javerzat, F. Eisenhaber et al., Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II

, Curr Biol, vol.14, pp.287-301, 2004.

M. Albrecht and T. Lengauer, Novel Sm-like proteins with long Cterminal tails and associated methyltransferases, FEBS Lett, vol.569, pp.18-26, 2004.

S. Vucetic, C. Brown, K. Dunker, and Z. Obradovic, Flavors of protein disorder, Proteins, vol.52, pp.573-584, 2003.

M. Mavrakis, A. A. Mccarthy, S. Roche, D. Blondel, and R. W. Ruigrok, Structure and function of the C-terminal domain of the polymerase cofactor of rabies virus, J Mol Biol, vol.343, pp.819-831, 2004.

P. Romero, Z. Obradovic, C. R. Kissinger, J. E. Villafranca, and A. K. Dunker, Identifying disordered regions in proteins from amino acid sequences, Proceedings of the IEEE International Conference on Neural Networks, pp.90-95, 1997.

X. Li, P. Romero, R. M. Dunker, A. K. Obradovic, and A. Z. , Predicting protein disorder for N-, C-and internal regions, Genome Informatics, vol.10, pp.30-40, 1999.

R. Linding, L. J. Jensen, F. Diella, P. Bork, T. J. Gibson et al., Protein disorder prediction: implications for structural proteomics, Structure (Camb), vol.11, pp.1453-1459, 2003.

J. Liu and B. Rost, NORSp: predictions of long regions without regular secondary structure, Nucleic Acids Res, vol.31, pp.3833-3835, 2003.

T. Zeev-ben-mordehai, E. H. Rydberg, A. Solomon, L. Toker, V. J. Auld et al., The intracellular domain of the Drosophila cholinesterase-like neural adhesion protein, gliotactin, is natively unfolded, Proteins, vol.53, pp.758-767, 2003.

I. Callebaut, G. Labesse, P. Durand, A. Poupon, L. Canard et al., Deciphering protein sequence information through hydrophobic cluster analysis (HCA): current status and perspectives, Cell Mol Life Sci, vol.53, pp.621-645, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00309857

K. Coeytaux and A. Poupon, Prediction of unfolded segments in a protein sequence based on amino acid composition, Bioinformatics, vol.21, pp.1891-1900, 2005.

R. L. Kingston, D. J. Hamel, L. S. Gay, F. W. Dahlquist, and B. W. Matthews, Structural basis for the attachment of a paramyxoviral polymerase to its template, Proc Natl Acad Sci, vol.101, pp.8301-8306, 2004.

S. Saraste, M. Carugo, and K. D. , Structural comparisons of calponin homology domains: implications for actin binding, PROTEINS: Structure, Function, and Bioinformatics DOI 10.1002/prot References Banuelos, vol.6, pp.1419-1431, 1998.

A. H. Beggs, T. J. Byers, J. H. Knoll, F. M. Boyce, G. A. Bruns et al., Cloning and characterization of two human skeletal muscle alpha-actinin genes located on chromosomes 1 and 11, J. Biol. Chem, vol.267, pp.9281-9288, 1992.

A. R. Bresnick, P. A. Janmey, and J. Condeelis, Evidence that a 27-residue sequence is the actin-binding site of ABP-120, J. Biol. Chem, vol.266, pp.12989-12993, 1991.

M. J. Broderick and S. J. Winder, Spectrin, alpha-actinin, and dystrophin, Adv. Protein Chem, vol.70, pp.203-246, 2005.

E. Borrego-diaz, Journal of Structural Biology, vol.155, pp.230-238, 2006.

A. T. Brunger, P. D. Adams, G. M. Clore, W. L. Delano, P. Gros et al., Crystallography and NMR system: a new software suite for macromolecular structure determination, Acta Crystallogr. D Biol. Crystallogr, vol.54, pp.905-921, 1998.

K. D. Carugo, S. Banuelos, and M. Saraste, Crystal structure of a calponin homology domain, Nat. Struct. Biol, vol.4, pp.175-179, 1997.

, The CCP4 suite: programs for protein crystallography, Acta Cryst, vol.50, pp.760-763, 1994.

O. A. Cherepanova, A. Orlova, V. E. Galkin, J. Kostan, G. Wiche et al., The interaction of the plectin ABD with actin, p.49, 2005.

M. Cuv, J. Searle, S. M. Barton, and G. J. , The Jalview Java alignment editor, Abstract No. 2424. Clamp, vol.20, pp.426-427, 2004.

K. Corrado, P. L. Mills, and J. S. Chamberlain, Deletion analysis of the dystrophin-actin binding domain, FEBS Lett, vol.344, pp.255-260, 1994.

P. B. Crowley and A. Golovin, Cation-pi interactions in protein-protein interfaces, Proteins, vol.59, pp.231-239, 2005.

R. C. Edgar, E. Fabbrizio, A. Bonet-kerrache, J. J. Leger, and D. Mornet, MUSCLE: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinformatics, vol.5, pp.10457-10463, 1993.

G. Franzot, B. Sjoblom, M. Gautel, and K. Djinovic-carugo, The crystal structure of the actin binding domain from alpha-actinin in its closed conformation: structural insight into phospholipid regulation of alpha-actinin, J. Mol. Biol, vol.348, pp.151-165, 2005.

K. Fukami, K. Furuhashi, M. Inagaki, T. Endo, S. Hatano et al., Requirement of phosphatidylinositol 4,5-bisphosphate for alpha-actinin function, Nature, vol.359, pp.150-152, 1992.

K. Fukami, N. Sawada, T. Endo, and T. Takenawa, IdentiWcation of a phosphatidylinositol 4,5-bisphosphate-binding site in chicken skeletal muscle alpha-actinin, J. Biol. Chem, vol.271, pp.2646-2650, 1996.

V. E. Galkin, A. Orlova, M. S. Vanloock, and E. H. Egelman, Do the utrophin tandem calponin homology domains bind F-actin in a compact or extended conformation?, J. Mol. Biol, vol.331, pp.967-972, 2003.

V. E. Galkin, A. Orlova, M. S. Vanloock, I. N. Rybakova, J. M. Ervasti et al., The utrophin actin-binding domain binds F-actin in two diVerent modes: implications for the spectrin superfamily of proteins, J. Cell Biol, vol.157, pp.243-251, 2002.

N. Galtier, M. Gouy, and C. Gautier, SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00435028

, Comput. Appl. Biosci, vol.12, pp.543-548

B. Garcia-alvarez, A. Bobkov, A. Sonnenberg, and J. M. De-pereda, Structural and functional analysis of the actin binding domain of plectin suggests alternative mechanisms for binding to F-actin and integrin beta4, Structure (Camb.), vol.11, pp.615-625, 2003.

M. Gimona, K. Djinovic-carugo, W. J. Kranewitter, and S. J. Winder, Functional plasticity of CH domains, FEBS Lett, vol.513, pp.98-106, 2002.

S. C. Goldsmith, N. Pokala, W. Shen, A. A. Fedorov, P. Matsudaira et al., The structure of an actin-crosslinking domain from human Wmbrin, Nat. Struct. Biol, vol.4, pp.708-712, 1997.

D. Hanein, N. Volkmann, S. Goldsmith, A. M. Michon, W. Lehman et al., An atomic model of Wmbrin binding to F-actin and its implications for Wlament crosslinking and regulation, Nat. Struct. Biol, vol.5, pp.787-792, 1998.

L. Hemmings, P. A. Kuhlman, and D. R. Critchley, Analysis of the actinbinding domain of alpha-actinin by mutagenesis and demonstration that dystrophin contains a functionally homologous domain, J. Cell Biol, vol.116, pp.1369-1380, 1992.

K. Honda, T. Yamada, R. Endo, Y. Ino, M. Gotoh et al., Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion, J. Cell Biol, vol.140, pp.1383-1393, 1998.

T. A. Jones, J. Zou, S. W. Cowan, and M. Kjeldgaard, Improved methods for building protein models in electron density maps and location of errors in these models, Acta Crystallogr. Sect. A, vol.47, pp.110-119, 1991.

N. H. Keep, F. L. Norwood, C. A. Moores, S. J. Winder, and J. Kendrick-jones, The 2.0 A structure of the second calponin homology domain from the actin-binding region of the dystrophin homologue utrophin, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02117123

, J. Mol. Biol, vol.285, pp.1257-1264

N. H. Keep, S. J. Winder, C. A. Moores, S. Walke, F. L. Norwood et al., Crystal structure of the actin-binding region of utrophin reveals a head-to-tail dimer, Structure Fold Des, vol.7, pp.1539-1546, 1999.

M. G. Klein, W. Shi, U. Ramagopal, Y. Tseng, D. Wirtz et al., Structure of the actin crosslinking core of Wmbrin. Structure (Camb.), vol.12, pp.999-1013, 2004.

P. A. Kuhlman, L. Hemmings, and D. R. Critchley, The identiWcation and characterisation of an actin-binding site in alpha-actinin by mutagenesis, FEBS Lett, vol.304, pp.201-206, 1992.

F. Landon, Y. Gache, H. Touitou, and A. Olomucki, Properties of two isoforms of human blood platelet alpha-actinin, Eur. J. Biochem, vol.153, pp.231-237, 1985.

W. Lehman, R. Craig, J. Kendrick-jones, and A. J. Sutherland-smith, An open or closed case for the conformation of calponin homology domains on F-actin?, J. Muscle Res. Cell Motil, vol.25, pp.351-358, 2004.

B. A. Levine, A. J. Moir, V. B. Patchell, and S. V. Perry, The interaction of actin with dystrophin, FEBS Lett, vol.263, pp.159-162, 1990.

B. A. Levine, A. J. Moir, V. B. Patchell, and S. V. Perry, Binding sites involved in the interaction of actin with the N-terminal region of dystrophin, FEBS Lett, vol.298, pp.44-48, 1992.

Y. Liu and D. Eisenberg, 3D domain swapping: as domains continue to swap, Protein Sci, vol.11, pp.1285-1299, 2002.

A. Mcgough, M. Way, and D. Derosier, Determination of the alphaactinin-binding site on actin Wlaments by cryoelectron microscopy and image analysis, J. Cell Biol, vol.126, pp.433-443, 1994.

C. A. Moores, N. H. Keep, and J. Kendrick-jones, Structure of the utrophin actin-binding domain bound to F-actin reveals binding by an induced Wt mechanism, J. Mol. Biol, vol.297, pp.465-480, 2000.

J. Navaza and P. Saludjian, AMoRe: an automated molecular replacement program package, Methods Enzymol, vol.276, pp.581-594, 1997.

A. Nicholls, K. A. Sharp, and B. Honig, Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons, Proteins, vol.11, pp.281-296, 1991.

F. L. Norwood, A. J. Sutherland-smith, N. H. Keep, and J. Kendrick-jones, The structure of the N-terminal actin-binding domain of human dystrophin and how mutations in this domain may cause Duchenne or Becker muscular dystrophy, Structure Fold Des, vol.8, pp.481-491, 2000.

C. A. Otey and O. Carpen, Alpha-actinin revisited: a fresh look at an old player, Cell Motil. Cytoskeleton, vol.58, pp.104-111, 2004.

F. M. Pavalko and K. Burridge, Disruption of the actin cytoskeleton after microinjection of proteolytic fragments of alpha-actinin, J. Cell Biol, vol.114, pp.481-491, 1991.

J. Sevcik, L. Urbanikova, J. Kost'an, L. Janda, and G. Wiche, Actinbinding domain of mouse plectin. Crystal structure and binding to vimentin, Eur. J. Biochem, vol.271, pp.1873-1884, 2004.

A. J. Sutherland-smith, C. A. Moores, F. L. Norwood, V. Hatch, R. Craig et al., An atomic model for actin binding by the CH do mains and spectrin-repeat modules of utrophin and dystrophin, J. Mol. Biol, vol.329, pp.15-33, 2003.

M. Way, B. Pope, and A. G. Weeds, Evidence for functional homology in the F-actin binding domains of gelsolin and alpha-actinin: implications for the requirements of severing and capping, J. Cell Biol, vol.119, pp.835-842, 1992.

S. J. Winder, Structure-function relationships in dystrophin and utrophin, Biochem. Soc. Trans, vol.24, pp.497-501, 1996.

T. D. Pollard and G. G. Borisy, Cellular motility driven by assembly and disassembly of actin filaments, Cell, vol.112, pp.453-465, 2003.

A. E. Engqvist-goldstein and D. G. Drubin, Actin assembly and endocytosis: From yeast to mammals, Annu Rev Cell Dev Biol, vol.19, pp.287-332, 2003.

S. Delft, A. J. Verkleij, J. Boonstra, and P. M. Van-bergen-en-henegouwen, Epidermal growth factor induces serine phosphorylation of actin, FEBS Lett, vol.357, pp.251-254, 1995.

J. Rush, Immunoaffinity profiling of tyrosine phosphorylation in cancer cells, Nat Biotechnol, vol.23, pp.94-101, 2005.

K. Kameyama, Tyrosine phosphorylation in plant bending, Nature, vol.407, p.37, 2000.

A. Schweiger, O. Mihalache, M. Ecke, and G. Gerisch, Stage-specific tyrosine phosphorylation of actin in Dictyostelium discoideum cells, J Cell Sci, vol.102, pp.601-609, 1992.

P. K. Howard, B. M. Sefton, and R. A. Firtel, Tyrosine phosphorylation of actin in Dictyostelium associated with cell-shape changes, Science, vol.259, pp.241-244, 1993.

A. Jungbluth, Stress-induced tyrosine phosphorylation of actin in Dictyostelium cells and localization of the phosphorylation site to tyrosine-53 adjacent to the DNase I binding loop, FEBS Lett, vol.375, pp.87-90, 1995.

M. L. Gauthier, M. A. Lydan, O. Day, D. Cotter, and A. D. , Endogenous autoinhibitors regulate changes in actin tyrosine phosphorylation during Dictyostelium spore germination, Cell Signal, vol.9, pp.79-83, 1997.

Y. Kishi, C. Clements, D. C. Mahadeo, D. A. Cotter, and M. Sameshima, High levels of actin tyrosine phosphorylation: Correlation with the dormant state of Dictyostelium spores, J Cell Sci, vol.111, pp.2923-2932, 1998.

X. Liu, S. Shu, M. S. Hong, R. L. Levine, and E. D. Korn, Phosphorylation of actin Tyr-53 inhibits filament nucleation and elongation and destabilizes filaments, Proc Natl Acad Sci, vol.103, pp.13694-13699, 2006.

H. P. Williams and A. J. Harwood, Cell polarity and Dictyostelium development, Curr Opin Microbiol, vol.6, pp.621-627, 2003.

A. Jungbluth, Strong increase in the tyrosine phosphorylation of actin upon inhibition of oxidative phosphorylation: correlation with reversible rearrangements in the actin skeleton of Dictyostelium cells, J Cell Sci, vol.107, pp.117-125, 1994.

K. C. Holmes, D. Popp, W. Gebhard, and W. Kabsch, Atomic model of the actin filament, Nature, vol.347, pp.44-49, 1990.

G. Hegyi, Intrastrand cross-linked actin between Gln-41 and Cys-374. I. Mapping of sites cross-linked in F-actin by N-(4-azido-2-nitrophenyl) putrescine, Biochemistry, vol.37, pp.17784-17792, 1998.

S. Y. Khaitlina and H. Strzelecka-golaszewska, Role of the DNase-I-binding loop in dynamic properties of actin filament, Biophys J, vol.82, pp.321-334, 2002.

T. Oda, H. Stegmann, R. R. Schroder, K. Namba, and Y. Maeda, Modeling of the F-actin structure, Adv Exp Med Biol, vol.592, pp.385-401, 2007.

S. C. Mockrin and E. D. Korn, Acanthamoeba profilin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5?-triphosphate, Biochemistry, vol.19, pp.5359-5362, 1980.

P. J. Goldschmidt-clermont, L. M. Machesky, S. K. Doberstein, and T. D. Pollard, Mechanism of the interaction of human platelet profilin with actin, J Cell Biol, vol.113, pp.1081-1089, 1991.

C. E. Schutt, J. C. Myslik, M. D. Rozycki, N. C. Goonesekere, and U. Lindberg, The structure of crystalline profilin-beta-actin, Nature, vol.365, pp.810-816, 1993.

F. Ferron, G. Rebowski, S. H. Lee, and R. Dominguez, Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP, EMBO J, vol.26, pp.4597-4606, 2007.

W. Kabsch, H. G. Mannherz, D. Suck, E. F. Pai, and K. C. Holmes, Atomic structure of the actin:DNase I complex, Nature, vol.347, pp.37-44, 1990.

P. J. Mclaughlin, J. T. Gooch, H. G. Mannherz, and A. G. Weeds, Structure of gelsolin segment 1-actin complex and the mechanism of filament severing, Nature, vol.364, pp.685-692, 1993.

L. R. Otterbein, C. Cosio, P. Graceffa, and R. Dominguez, Crystal structures of the vitamin D-binding protein and its complex with actin: Structural basis of the actin-scavenger system, Proc Natl Acad Sci, vol.99, pp.8003-8008, 2002.

D. Chereau, Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly, Proc Natl Acad Sci, vol.102, pp.16644-16649, 2005.

S. H. Lee, D. B. Hayes, G. Rebowski, I. Tardieux, and R. Dominguez, Toxofilin from Toxoplasma gondii forms a ternary complex with an antiparallel actin dimer, Proc Natl Acad Sci, vol.104, pp.16122-16127, 2007.

V. A. Klenchin, Trisoxazole macrolide toxins mimic the binding of actincapping proteins to actin, Nat Struct Biol, vol.10, pp.1058-1063, 2003.

M. A. Rould, Q. Wan, P. B. Joel, S. Lowey, and K. M. Trybus, Crystal structures of expressed non-polymerizable monomeric actin in the ADP and ATP states, J Biol Chem, vol.281, pp.31909-31919, 2006.

L. R. Otterbein, P. Graceffa, and R. Dominguez, The crystal structure of uncomplexed actin in the ADP state, Science, vol.293, pp.708-711, 2001.

S. Vorobiev, The structure of nonvertebrate actin: Implications for the ATP hydrolytic mechanism, Proc Natl Acad Sci, vol.100, pp.5760-5765, 2003.

L. D. Burtnick, D. Urosev, E. Irobi, K. Narayan, and R. C. Robinson, Structure of the N-terminal half of gelsolin bound to actin: Roles in severing, apoptosis and FAF, EMBO J, vol.23, pp.2713-2722, 2004.

H. Strzelecka-golaszewska, J. Moraczewska, S. Y. Khaitlina, and M. Mossakowska, Localization of the tightly bound divalent-cation-dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion, Eur J Biochem, vol.211, pp.731-742, 1993.

H. Strzelecka-golaszewska, A. Wozniak, T. Hult, and U. Lindberg, Effects of the type of divalent cation, Ca2? or Mg2?, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin, Biochem J, vol.316, pp.713-721, 1996.

A. Muhlrad, Cofilin induced conformational changes in F-actin expose subdomain 2 to proteolysis, J Mol Biol, vol.342, pp.1559-1567, 2004.

J. Bryan, Gelsolin has three actin-binding sites, J Cell Biol, vol.106, pp.1553-1562, 1988.

J. K. Chik, U. Lindberg, and C. E. Schutt, The structure of an open state of beta-actin at 2.65 A resolution, J Mol Biol, vol.263, pp.607-623, 1996.

H. Schuler, ATPase activity and conformational changes in the regulation of actin, Biochim Biophys Acta, vol.1549, pp.137-147, 2001.

T. J. Minehardt, P. A. Kollman, R. Cooke, and E. Pate, The open nucleotide pocket of the profilin/actin x-ray structure is unstable and closes in the absence of profilin, Biophys J, vol.90, pp.2445-2449, 2006.

M. M. Tirion and D. Ben-avraham, Normal mode analysis of G-actin, J Mol Biol, vol.230, pp.186-195, 1993.

I. Perelroizen, J. B. Marchand, L. Blanchoin, D. Didry, and M. F. Carlier, Interaction of profilin with G-actin and poly(L-proline), Biochemistry, vol.33, pp.8472-8478, 1994.

E. H. Egelman, Actin allostery again?, Nat Struct Biol, vol.8, pp.735-736, 2001.

H. Frauenfelder, S. G. Sligar, and P. G. Wolynes, The energy landscapes and motions of proteins, Science, vol.254, pp.1598-1603, 1991.

, The CCP4 suite: Programs for protein crystallography, Acta Crystallogr D, vol.50, pp.760-763, 1994.

R. C. Robinson, Crystal structure of Arp2/3 complex, Science, vol.294, pp.1679-1684, 2001.

. Baek, , vol.105, 2008.

T. Ahola and L. Kaariainen, Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP, Proc. Natl. Acad. Sci, vol.92, pp.507-511, 1995.

M. D. Allen, A. M. Buckle, S. C. Cordell, J. Lowe, and M. Bycroft, The crystal structure of AF1521 a protein from Archaeoglobus fulgidus with homology to the non-histone domain of macroH2A, J. Mol. Biol, vol.330, pp.503-511, 2003.

N. S. Berrow, K. Bussow, B. Coutard, J. Diprose, M. Ekberg et al., Recombinant protein expression and solubility screening in Escherichia coli: a comparative study, Acta Crystallogr. D Biol. Crystallogr, vol.62, pp.1218-1226, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00187845

S. Chakravarthy, S. K. Gundimella, C. Caron, P. Perche, J. R. Pehrson et al., Structural characterization of the histone variant macroH2A, Mol. Cell. Biol, vol.25, pp.7616-7624, 2005.

A. Chiarugi and M. A. Moskowitz, Cell biology. PARP-1-a perpetrator of apoptotic cell death, Science, vol.297, pp.200-201, 2002.

, The CCP4 suite: programs for protein crystallography, Acta Crystallogr D Biol. Crystallogr, vol.50, issue.4, pp.760-763, 1994.

X. De-lamballerie, E. Leroy, R. N. Charrel, K. Ttsetsarkin, S. Higgs et al., Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come?, Virol. J, vol.5, p.33, 2008.

T. J. Dolinsky, P. Czodrowski, H. Li, J. E. Nielsen, J. H. Jensen et al., PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations, Nucleic Acids Res, vol.35, pp.522-525, 2007.

S. Doublie, Preparation of selenomethionyl proteins for phase determination, Methods Enzymol, vol.276, pp.523-530, 1997.

M. Egloff, H. Malet, Á. Putics, M. Heinonen, H. Dutartre et al., Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains, J. Virol, vol.80, pp.8493-8502, 2006.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallogr. D Biol. Crystallogr, vol.60, pp.2126-2132, 2004.

U. B. Ericsson, B. M. Hallberg, G. T. Detitta, N. Dekker, and P. Nordlund, Thermofluor-based high-throughput stability optimization of proteins for structural studies, Anal. Biochem, vol.357, pp.289-298, 2006.

K. K. Eriksson, L. Cervantes-barragán, B. Ludewig, and V. Thiel, Mouse hepatitis virus liver pathology is dependent on ADP-ribose-1?-phosphatase, a viral function conserved in the alpha-like supergroup, J. Virol, vol.82, pp.12325-12334, 2008.

A. Geerlof, J. Brown, B. Coutard, M. P. Egloff, F. J. Enguita et al., The impact of protein characterization in structural proteomics, Acta Crystallogr, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00187921

, D Biol. Crystallogr, vol.62, pp.1125-1136

A. E. Gorbalenya, E. V. Koonin, and M. M. Lai, Putative papainrelated thiol proteases of positive-strand RNA viruses. Identification of rubiand aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha-and coronaviruses, FEBS Lett, vol.288, pp.201-205, 1991.

W. Kabsch, Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants, J. Appl. Crystallogr, vol.26, pp.795-800, 1993.

G. I. Karras, G. Kustatscher, H. R. Buhecha, M. D. Allen, C. Pugieux et al., The macro domain is an ADPribose binding module, EMBO J, vol.24, pp.1911-1920, 2005.

A. C. Kennedy, J. Fleming, and L. Solomon, Chikungunya viral arthropathy: a clinical description, J. Rheumatol, vol.7, pp.231-236, 1980.

D. Kumaran, S. Eswaramoorthy, F. W. Studier, and S. Swaminathan, Structure and mechanism of ADP-ribose-1?-monophosphatase (Appr-1?-pase), a ubiquitous cellular processing enzyme, Protein Sci, vol.14, pp.719-726, 2005.

G. Kustatscher, M. Hothorn, C. Pugieux, K. Scheffzek, and A. G. Ladurner, Splicing regulates NAD metabolite binding to histone macroH2A, Nat. Struct. Mol. Biol, vol.12, pp.624-625, 2005.

A. G. Ladurner, Inactivating chromosomes: a macro domain that minimizes transcription, Mol. Cell, vol.12, pp.1-3, 2003.

M. W. Lastarza, A. Grakoui, and C. M. Rice, Deletion and duplication mutations in the C-terminal nonconserved region of Sindbis virus nsP3: effects on phosphorylation and on virus replication in vertebrate and invertebrate cells, Virology, vol.202, pp.224-232, 1994.

A. G. Leslie, Recent changes to the MOSFLM package for processing film and image plate data. Joint CCP4 and ESF-EACMB Newsl, 1992.

I. Letunic, R. R. Copley, B. Pils, S. Pinkert, J. Schultz et al., SMART 5: domains in the context of genomes and networks, Nucleic Acids Res, vol.34, pp.257-260, 2006.

G. P. Li, M. W. Starza, W. R. Hardy, J. H. Strauss, and C. M. Rice, Phosphorylation of Sindbis virus nsP3 in vivo and in vitro, Virology, vol.179, pp.416-427, 1990.

H. A. Lindner, N. Fotouhi-ardakani, V. Lytvyn, P. Lachance, T. Sulea et al., The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme, J. Virol, vol.79, pp.15199-15208, 2005.

H. Malet, K. Dalle, N. Bremond, F. Tocque, S. Blangy et al., Expression, purification and crystallization of the SARS-CoV macro domain, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun, vol.62, pp.405-408, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02066254

M. R. Martzen, S. M. Mccraith, S. L. Spinelli, F. M. Torres, S. Fields et al., A biochemical genomics approach for identifying genes by the activity of their products, Science, vol.286, pp.1153-1155, 1999.

A. J. Malet and . Virol, INIST-CNRS DRD on February, vol.16, 2010.

A. J. Mccoy, Solving structures of protein complexes by molecular replacement with Phaser, Acta Crystallogr. D Biol. Crystallogr, vol.63, pp.32-41, 2007.

A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, SCOP: a structural classification of proteins database for the investigation of sequences and structures, J. Mol. Biol, vol.247, pp.536-540, 1995.

J. L. Nargi-aizenman, C. M. Simbulan-rosenthal, T. A. Kelly, M. E. Smulson, and D. E. Griffin, Rapid activation of poly(ADP-ribose) polymerase contributes to Sindbis virus and staurosporine-induced apoptotic cell death, Virology, vol.293, pp.164-171, 2002.

M. Neuvonen and T. Ahola, Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites, J. Mol. Biol, vol.385, pp.212-225, 2009.

M. W. Pantoliano, E. C. Petrella, J. D. Kwasnoski, V. S. Lobanov, J. Myslik et al., High-density miniaturized thermal shift assays as a general strategy for drug discovery, J. Biomol. Screen, vol.6, pp.429-440, 2001.

J. R. Pehrson and R. N. Fuji, Evolutionary conservation of histone macroH2A subtypes and domains, Nucleic Acids Res, vol.26, pp.2837-2842, 1998.

J. Peränen, M. Rikkonen, P. Liljeström, and L. Kääriäinen, Nuclear localization of Semliki Forest virus-specific nonstructural protein nsP2, J. Virol, vol.64, pp.1888-1896, 1990.

Y. Piotrowski, G. Hansen, A. L. Boomars-van-der-zanden, E. J. Snijder, A. E. Gorbalenya et al., Crystal structures of the X-domains of a group-1 and a group-3 coronavirus reveal that ADP-ribose binding may not be a conserved property, Protein Sci, vol.18, pp.6-16, 2009.

A. M. Powers, A. C. Brault, Y. Shirako, E. G. Strauss, W. Kang et al., Evolutionary relationships and systematics of the alphaviruses, J. Virol, vol.75, pp.10118-10131, 2001.

Á. Putics, W. Filipowicz, J. Hall, A. E. Gorbalenya, and J. Ziebuhr, ADP-ribose-1?-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture, J. Virol, vol.79, pp.12721-12731, 2005.

M. Rikkonen, J. Peränen, and L. Kääriäinen, ATPase and GTPase activities associated with Semliki Forest virus nonstructural protein nsP2, 1994.

, J. Virol, vol.68, pp.5804-5810

F. Rivas, L. A. Diaz, V. M. Cardenas, E. Daza, L. Bruzon et al., Epidemic Venezuelan equine encephalitis in La Guajira, Colombia, J. Infect. Dis, vol.175, pp.828-832, 1995.

P. Roversi, E. Blanc, C. Vonrhein, G. Evans, and G. Bricogne, Modelling prior distributions of atoms for macromolecular refinement and completion, Acta Crystallogr. D Biol. Crystallogr, vol.56, pp.1316-1323, 2000.

J. K. Rubach, B. R. Wasik, J. C. Rupp, R. J. Kuhn, R. W. Hardy et al., Characterization of purified Sindbis virus nsP4 RNA-dependent RNA polymerase activity in vitro, Virology, vol.384, pp.201-208, 2009.

K. S. Saikatendu, J. S. Joseph, V. Subramanian, T. Clayton, M. Griffith et al.,

. Kuhn, Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1?-phosphate dephosphorylation by a conserved domain of nsP3, Structure, vol.13, pp.1665-1675, 2005.

T. R. Schneider and G. M. Sheldrick, Substructure solution with SHELXD, Acta Crystallogr. D Biol. Crystallogr, vol.58, pp.1772-1779, 2002.

G. M. Sheldrick, Macromolecular phasing with SHELXE, Z. Kristallogr, vol.217, pp.644-650, 2002.

E. J. Snijder, P. J. Bredenbeek, J. C. Dobbe, V. Thiel, J. Ziebuhr et al., Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage, J. Mol. Biol, vol.331, pp.991-1004, 2003.

E. G. Strauss, R. J. De-groot, R. Levinson, and J. H. Strauss, Identification of the active site residues in the nsP2 proteinase of Sindbis virus, Virology, vol.191, pp.932-940, 1992.

M. T. Tuittila, M. G. Santagati, M. Röyttä, J. A. Määttä, and A. E. Hinkkanen, Replicase complex genes of Semliki Forest virus confer lethal neurovirulence, J. Virol, vol.74, pp.4579-4589, 2000.

H. Vihinen, T. Ahola, M. Tuittila, A. Merits, and L. Kaariainen, Elimination of phosphorylation sites of Semliki Forest virus replicase protein nsP3, J. Biol. Chem, vol.276, pp.5745-5752, 2001.

H. Vihinen and J. Saarinen, Phosphorylation site analysis of Semliki forest virus nonstructural protein 3, J. Biol. Chem, vol.275, pp.27775-27783, 2000.

Y. Wang, S. G. Sawicki, and D. L. Sawicki, Alphavirus nsP3 functions to form replication complexes transcribing negative-strand RNA, J. Virol, vol.68, pp.6466-6475, 1994.

S. C. Weaver, T. K. Frey, H. V. Huang, R. M. Kinney, C. M. Rice et al., Virus taxonomy. VIIIth Report of the ICTV, pp.999-1008, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-01977321

G. Wengler, The NS 3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity, Curr Opin Chem Biol, vol.197, pp.610-616, 1993.

Y. Saeki, T. Kudo, T. Sone, Y. Kikuchi, H. Yokosawa et al., Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome, EMBO J, vol.28, issue.4, pp.359-371, 2009.

F. Shang, G. Deng, Q. Liu, W. Guo, A. L. Haas et al., Lys6-modified Ubiquitin Inhibits Ubiquitin-dependent Protein Degradation, J Biol Chem, vol.280, pp.20365-20374, 2005.

A. K. Al-hakim, A. Zagorska, L. Chapman, M. Deak, M. Peggie et al., Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains, Biochem J, vol.411, issue.2, pp.249-260, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00478950

A. Vagin and A. Teplyakov, MOLREP: an automated program for molecular replacement, J Appl Crystallogr, vol.30, pp.1022-1025, 1997.

A. T. Brünger, P. D. Adams, G. M. Clore, W. L. Delano, P. Gros et al., Crystallography & NMR system: A new software suite for macromolecular structure determination, Acta Crystallogr D, vol.54, pp.905-921, 1998.

T. A. Jones, J. Y. Zou, S. W. Cowan, and M. Kjeldgaard, Improved methods for building protein models in electron density maps and the location of errors in these models, Acta Crystallogr A, pp.110-119, 1991.

R. A. Laskowski, M. W. Macarthur, D. S. Moss, and J. M. Thornton, PRO-CHECK: a program to check the stereochemical quality of protein structures, J Appl Cryst, vol.26, pp.283-291, 1993.

W. J. Cook, L. C. Jeffrey, M. Carson, Z. Chen, and C. M. Pickart, Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2)

, J Biol Chem, vol.267, issue.23, pp.16467-16471, 1992.

W. J. Cook, L. C. Jeffrey, E. Kasperek, and C. M. Pickart, Structure of tetraubiquitin shows how multiubiquitin chains can be formed, J Mol Biol, vol.236, issue.2, pp.601-609, 1994.

D. Komander, F. Reyes-turcu, J. D. Licchesi, P. Odenwaelder, K. D. Wilkinson et al., Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains, EMBO Rep, vol.10, pp.466-473, 2009.

R. Beal, Q. Deveraux, G. Xia, M. Rechsteiner, and C. Pickart, Surface hydrophobic residues of multiubiquitin chains essential for proteolytic targeting, Proc Natl Acad Sci, vol.93, issue.2, pp.861-866, 1996.

R. E. Beal, D. Toscano-cantaffa, P. Young, M. Rechsteiner, and C. M. Pickart, The hydrophobic effect contributes to polyubiquitin chain recognition, Biochemistry, vol.37, issue.9, pp.2925-2959, 1998.

L. Hicke, H. L. Schubert, and C. P. Hill, Ubiquitin-binding domains, Nat Rev Mol Cell Biol, vol.6, issue.8, pp.610-631, 2005.

H. Nishikawa, S. Ooka, K. Sato, K. Arima, J. Okamoto et al., Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase, J Biol Chem, vol.279, pp.3916-3924, 2004.

B. Sobhian, G. Shao, D. R. Lilli, A. C. Culhane, L. A. Moreau et al., Livingston DM, Greenberg RA: RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites, Science, vol.316, pp.1198-1202, 2007.

M. J. Eddins, R. Varadan, D. Fushman, C. M. Pickart, and C. Wolberger, Crystal Structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH, J Mol Biol, vol.367, pp.204-211, 2007.

C. L. Phillips, J. Thrower, C. M. Pickart, and C. P. Hill, Structure of a new crystal form of tetraubiquitin, Acta Crystallogr D, issue.2, pp.341-344, 2001.

I. Dokmani, M. Siki, S. Tomi, and . Snijder, Since 2003, interest in SARS-CoV has greatly promoted structural and functional studies of its nsps. In recent years, many threedimensional structures of replication proteins have appeared in the literature, including those of nsp1, Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination. Acta Crystallogr D, pp.257-263, 1981.

. Sars-cov-unique-domain;-chatterjee, 2009) and (iv) the papain-like protease PLP2, the SUD domain

, In many cases, the crystal structures allowed scientists to suggest or to ascertain a biochemical function for the nsps, such as nsp7-nsp8, which acts as an RNA-dependent RNA primase (Imbert et al., 2006), and the nsp15 endonuclease, the active site of which has been found to share structural homology to the active site of RNAse A, the zinc-binding protein nsp10, 2002.

M. S. Almeida, M. A. Johnson, T. Herrmann, M. Geralt, and K. Wü-thrich, J. Virol, vol.81, pp.3151-3161, 2007.

K. Anand, G. J. Palm, J. R. Mesters, S. G. Siddell, J. Ziebuhr et al., EMBO J, vol.21, pp.3213-3224, 2002.

M. Bouvet, C. Debarnot, I. Imbert, B. Selisko, E. J. Snijder et al., PLoS Pathog, vol.6, p.1000863, 2010.

A. Chatterjee, M. A. Johnson, P. Serrano, B. Pedrini, J. S. Joseph et al., J. Virol, vol.83, pp.1823-1836, 2009.

, Collaborative Computational Project, Number, vol.4, pp.760-763, 1994.

E. Decroly, I. Imbert, B. Coutard, M. Bouvet, B. Selisko et al., J. Virol, vol.82, pp.8071-8084, 2008.

M. P. Egloff, F. Ferron, V. Campanacci, S. Longhi, C. Rancurel et al., Proc. Natl Acad. Sci. USA, vol.101, pp.3792-3796, 2004.

M. P. Egloff, H. Malet, A. Putics, M. Heinonen, H. Dutartre et al., J. Virol, vol.80, pp.8493-8502, 2006.

M. Grotthuss, L. S. Wyrwicz, and L. Rychlewski, Cell, vol.113, pp.701-702, 2003.

I. Imbert, J. C. Guillemot, J. M. Bourhis, C. Bussetta, B. Coutard et al., EMBO J, vol.25, pp.4933-4942, 2006.

I. Imbert, E. J. Snijder, M. Dimitrova, J. C. Guillemot, P. Lé-cine et al., Virus Res, vol.133, pp.136-148, 2008.

J. S. Joseph, K. S. Saikatendu, V. Subramanian, B. W. Neuman, A. Brooun et al., J. Virol, vol.80, pp.7894-7901, 2006.

J. S. Joseph, K. S. Saikatendu, V. Subramanian, B. W. Neuman, M. J. Buchmeier et al., J. Virol, vol.81, pp.6700-6708, 2007.

W. Kabsch, Acta Cryst, vol.66, pp.125-132, 2010.

M. M. Lai and S. A. Stohlman, J. Virol, vol.38, pp.661-670, 1981.

A. Lugari, S. Betzi, E. Decroly, E. Bonnaud, A. Hermant et al., J. Biol. Chem, vol.285, pp.33230-33241, 2010.

K. Ratia, K. S. Saikatendu, B. D. Santarsiero, N. Barretto, S. C. Baker et al., Proc. Natl Acad. Sci. USA, vol.103, pp.5717-5722, 2006.

S. Ricagno, M. P. Egloff, R. Ulferts, B. Coutard, D. Nurizzo et al., Proc. Natl Acad. Sci. USA, vol.103, pp.11892-11897, 2006.

B. Selisko, F. F. Peyrane, B. Canard, K. Alvarez, and E. Decroly, J. Gen. Virol, vol.91, pp.112-121, 2010.

P. Serrano, M. A. Johnson, M. S. Almeida, R. Horst, T. Herrmann et al., J. Virol, vol.81, pp.12049-12060, 2007.

E. J. Snijder, P. J. Bredenbeek, J. C. Dobbe, V. Thiel, J. Ziebuhr et al., J. Mol. Biol, vol.331, pp.991-1004, 2003.

D. Su, Z. Lou, F. Sun, Y. Zhai, H. Yang et al., J. Virol, vol.80, pp.7902-7908, 2006.

V. Thiel, K. A. Ivanov, A. Putics, T. Hertzig, B. Schelle et al., J. Gen. Virol, vol.84, pp.2305-2315, 2003.

A. L. Vliet, . Van, S. L. Smits, P. J. Rottier, and R. J. De-groot, EMBO J, vol.21, pp.6571-6580, 2002.

Y. Zhai, F. Sun, X. Li, H. Pang, X. Xu et al., Nature Struct. Mol. Biol, vol.12, pp.980-986, 2005.

, Acta Cryst, vol.67, pp.404-408, 2011.

D. E. Alvarez, C. V. Filomatori, and A. V. Gamarnik, Functional analysis of dengue virus cyclization sequences located at the 5' and 3'UTRs, Virology, vol.375, pp.223-235, 2008.

D. E. Alvarez, M. F. Lodeiro, S. J. Ludueña, L. I. Pietrasanta, and A. V. Gamarnik, Long-range RNA-RNA interactions circularize the dengue virus genome, J. Virol, vol.79, pp.6631-6643, 2005.

D. Benarroch, M. P. Egloff, L. Mulard, C. Guerreiro, J. L. Romette et al., A structural basis for the inhibition of the NS5 dengue virus mRNA 2'-O-methyltransferase domain by ribavirin 5'-triphosphate, J. Biol. Chem, vol.279, pp.35638-35643, 2004.

J. M. Crance, N. Scaramozzino, A. Jouan, and D. Garin, Interferon, ribavirin, 6-azauridine and glycyrrhizin: antiviral compounds active against pathogenic F flaviviruses, Antiviral Res, vol.58, pp.73-79, 2003.

P. De-felipe, G. A. Luke, L. E. Hughes, D. Gani, C. Halpin et al., E unum pluribus: multiple proteins from a self-processing polyprotein, Trends Biotechnol, vol.24, pp.68-75, 2006.

H. Dong, B. Zhang, and P. Y. Shi, Flavivirus methyltransferase: A novel antiviral target, Antiviral Res, vol.80, pp.1-10, 2008.

V. A. Doronina, C. Wu, P. De-felipe, M. S. Sachs, M. D. Ryan et al., Site-specific release of nascent chains from ribosomes at a sense codon, Mol. Cell. Biol, vol.28, pp.4227-4239, 2008.

M. P. Egloff, D. Benarroch, B. Selisko, J. L. Romette, and B. Canard, An RNA cap (nucleoside-2'-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization, EMBO J, vol.21, pp.2757-2768, 2002.

M. Ekkapongpisit, T. Wannatung, T. Susantad, K. Triwitayakorn, and D. R. Smith, cDNA-AFLP analysis of differential gene expression in human hepatoma cells (HepG2) upon dengue virus infection, J. Med. Virol, vol.79, pp.552-561, 2007.

B. Falgout, R. Chanock, and C. J. Lai, Proper processing of dengue virus nonstructural glycoprotein NS1 requires the N-terminal hydrophobic signal sequence and the downstream nonstructural protein NS2a, J. Virol, vol.63, pp.1852-1860, 1989.

R. Fayzulin, F. Scholle, O. Petrakova, I. Frolov, and P. W. Mason, Evaluation of replicative capacity and genetic stability of West Nile virus replicons using highly efficient packaging cell lines, Virology, vol.351, pp.196-209, 2006.

C. V. Filomatori, M. F. Lodeiro, D. E. Alvarez, M. M. Samsa, L. Pietrasanta et al., A 5' RNA element promotes dengue virus RNA synthesis on a circular genome, Genes Dev, vol.20, pp.2238-2249, 2006.

J. R. Goodell, F. Puig-basagoiti, B. M. Forshey, P. Y. Shi, and D. M. Ferguson, Identification of compounds with anti-West Nile Virus activity, J. Med. Chem, vol.49, pp.2127-2137, 2006.

J. D. Graci and C. E. Cameron, Mechanisms of action of ribavirin against distinct viruses, Rev. Med. Virol, vol.16, pp.37-48, 2006.

B. Gu, S. Ouzunov, L. Wang, P. Mason, N. Bourne et al., Discovery of small molecule inhibitors of West Nile virus using a high-throughput sub-genomic replicon screen, Antiviral Res, vol.70, pp.39-50, 2006.

R. C. Gualano, M. J. Pryor, M. R. Cauchi, P. J. Wright, and A. D. Davidson, Identification of a major determinant of mouse neurovirulence of dengue virus type 2 using stably cloned genomic-length cDNA, J. Gen. Virol, vol.79, pp.437-446, 1998.

T. J. Harvey, W. J. Liu, X. J. Wang, R. Linedale, M. Jacobs et al., Tetracycline-inducible packaging cell line for production of flavivirus replicon particles, J. Virol, vol.78, pp.531-538, 2004.

C. U. Hellen and P. Sarnow, Internal ribosome entry sites in eukaryotic mRNA molecules, Genes Dev, vol.15, pp.1593-1612, 2001.

M. Hennecke, M. Kwissa, K. Metzger, A. Oumard, A. Kröger et al., Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs, Nucleic Acids Res, vol.29, pp.3327-3334, 2001.

O. Hershkovitz, A. Zilka, A. Bar-ilan, S. Abutbul, A. Davidson et al., Dengue virus replicon expressing the nonstructural proteins suffices to enhance membrane expression of HLA class I and inhibit lysis by human NK cells, J. Virol, vol.82, pp.7666-7676, 2008.

L. M. Higa, M. B. Caruso, F. Canellas, M. R. Soares, A. L. Oliveira-carvalho et al., Secretome of HepG2 cells infected with dengue virus: implications for pathogenesis, Biochim. Biophys. Acta, vol.1784, pp.1607-1616, 2008.

M. R. Huerre, N. T. Lan, P. Marianneau, N. B. Hue, H. Khun et al., Liver histopathology and biological correlates in five cases of fatal dengue fever in Vietnamese children, Virchows Arch, vol.438, pp.107-115, 2001.

A. Ibrahimi, G. Vande-velde, V. Reumers, J. Toelen, I. Thiry et al., Highly efficient multicistronic lentiviral vectors with peptide 2A sequences, Gene Ther, vol.20, pp.845-860, 2009.

P. A. Johnston, J. Phillips, T. Y. Shun, S. Shinde, J. S. Lazo et al., HTS identifies novel and specific uncompetitive inhibitors of the two-component NS2B-NS3 proteinase of West Nile virus, Assay Drug Dev. Technol, vol.5, pp.737-750, 2007.

M. Jones, A. Davidson, L. Hibbert, P. Gruenwald, J. Schlaak et al., Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression, J. Virol, vol.79, pp.5414-5420, 2005.

M. Kapoor, L. Zhang, M. Ramachandra, J. Kusukawa, K. E. Ebner et al., Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5, J. Biol. Chem, vol.270, pp.19100-19106, 1995.

A. A. Khromykh, H. Meka, K. J. Guyatt, and E. G. Westaway, Essential role of cyclization sequences in flavivirus RNA replication, J. Virol, vol.75, pp.6719-6728, 2001.

W. C. Koff, J. L. Elm, and S. B. Halstead, Antiviral effects if ribavirin and 6-mercapto-9-tetrahydro-2-furylpurine against dengue viruses in vitro, Antiviral Res, vol.2, pp.69-79, 1982.

J. Lescar, D. Luo, T. Xu, A. Sampath, S. P. Lim et al., Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target, Antiviral Res, vol.80, pp.94-101, 2008.

J. Y. Leung, G. P. Pijlman, N. Kondratieva, J. Hyde, J. M. Mackenzie et al., Role of nonstructural protein NS2A in flavivirus assembly, J. Virol, vol.82, pp.4731-4741, 2008.

C. Liang, E. Rieder, B. Hahm, S. K. Jang, A. Paul et al., Replication of a novel subgenomic HCV genotype 1a replicon expressing a puromycin resistance gene in Huh-7 cells, Virology, vol.333, pp.41-53, 2005.

S. P. Lim, D. Wen, T. L. Yap, C. K. Yan, J. Lescar et al., A scintillation proximity assay for dengue virus NS5 2'-O-methyltransferase-kinetic and inhibition analyses, Antiviral Res, vol.80, pp.360-369, 2008.

B. D. Lindenbach, H. J. Thiel, and C. M. Rice, Flaviviridae: the viruses and their replication, Fields Virology, vol.1, pp.1101-1152, 2007.

W. J. Liu, X. J. Wang, V. V. Mokhonov, P. Y. Shi, R. Randall et al., Inhibition of interferon signaling by the New York 99 strain and Kunjin subtype of West Nile virus involves blockage of STAT1 and STAT2 activation by nonstructural proteins, J. Virol, vol.79, pp.1934-1942, 2005.

M. K. Lo, M. Tilgner, K. A. Bernard, and P. Y. Shi, Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3' untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication, J. Virol, vol.77, pp.10004-10014, 2003.

M. K. Lo, M. Tilgner, and P. Y. Shi, Potential high-throughput assay for screening inhibitors of West Nile virus replication, J. Virol, vol.77, pp.12901-12906, 2003.

H. Malet, N. Massé, B. Selisko, J. L. Romette, K. Alvarez et al., The flavivirus polymerase as a target for drug discovery, Antiviral Res, vol.80, pp.23-35, 2008.

H. Mizuguchi, Z. Xu, A. Ishii-watabe, E. Uchida, and T. Hayakawa, IRESdependent second gene expression is significantly lower than cap-dependent first gene expression in a bicistronic vector, Mol. Ther, vol.1, pp.376-382, 2000.

C. Y. Ng, F. Gu, W. Y. Phong, Y. L. Chen, S. P. Lim et al., Construction and characterization of a stable subgenomic dengue virus type 2 replicon system for antiviral compound and siRNA testing, Antiviral Res, vol.76, pp.222-231, 2007.

A. O. Noueiry, P. D. Olivo, U. Slomczynska, Y. Zhou, B. Buscher et al., Identification of novel small-molecule inhibitors of West Nile virus infection, J. Virol, vol.81, pp.11992-12004, 2007.

W. B. Parker, Metabolism and antiviral activity of ribavirin, Virus Res, vol.107, pp.165-171, 2005.

S. N. Pattanakitsakul, K. Rungrojcharoenkit, R. Kanlaya, S. Sinchaikul, S. Noisakran et al., Proteomic analysis of host responses in HepG2 cells during dengue virus infection, J. Proteome Res, vol.6, pp.4592-4600, 2007.

M. J. Pryor, J. M. Carr, H. Hocking, A. D. Davidson, P. Li et al., Replication of dengue virus type 2 in human monocyte-derived macrophages: comparisons of isolates and recombinant viruses with substitutions at amino acid 390 in the envelope glycoprotein, Am. J. Trop. Med. Hyg, vol.65, pp.427-434, 2001.

F. Puig-basagoiti, T. S. Deas, P. Ren, M. Tilgner, D. M. Ferguson et al., High-throughput assays using a luciferase-expressing replicon, virus-like particles, and full-length virus for West Nile virus drug discovery, Antimicrob. Agents Chemother, vol.49, pp.4980-4988, 2005.

F. Puig-basagoiti, M. Qing, H. Dong, B. Zhang, G. Zou et al., Identification and characterization of inhibitors of West Nile virus, Antiviral Res, vol.83, pp.71-79, 2009.

F. Puig-basagoiti, M. Tilgner, B. M. Forshey, S. M. Philpott, N. G. Espina et al., Triaryl pyrazoline compound inhibits flavivirus RNA replication, Antimicrob. Agents Chemother, vol.50, pp.1320-1329, 2006.

C. M. Rice, E. M. Lenches, S. R. Eddy, S. J. Shin, R. L. Sheets et al., Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution, Science, vol.229, pp.726-733, 1985.

W. W. Rodrigo, X. Jin, S. D. Blackley, R. C. Rose, and J. J. Schlesinger, Differential enhancement of dengue virus immune complex infectivity mediated by signaling-competent and signaling-incompetent human Fcgamma RIA (CD64) or FcgammaRIIA (CD32), J. Virol, vol.80, pp.10128-10138, 2006.

S. L. Rossi, R. Fayzulin, N. Dewsbury, N. Bourne, and P. W. Mason, Mutations in West Nile virus nonstructural proteins that facilitate replicon persistence in vitro attenuate virus replication in vitro and in vivo, Virology, vol.364, pp.184-195, 2007.

S. L. Rossi, Q. Zhao, V. K. O'donnell, and P. W. Mason, Adaptation of West Nile virus replicons to cells in culture and use of replicon-bearing cells to probe antiviral action, Virology, vol.331, pp.457-470, 2005.

B. Selisko, H. Dutartre, J. C. Guillemot, C. Debarnot, D. Benarroch et al., Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases, Virology, vol.351, pp.145-158, 2006.

S. L. Seneviratne, G. N. Malavige, and H. J. De-silva, Pathogenesis of liver involvement during dengue viral infections, Trans. R. Soc. Trop. Med. Hyg, vol.100, pp.608-614, 2006.

P. Y. Shi, M. Tilgner, and M. K. Lo, Construction and characterization of subgenomic replicons of New York strain of West Nile virus, Virology, vol.296, pp.219-233, 2002.

R. W. Sidwell, J. H. Huffman, G. P. Khare, L. B. Allen, J. T. Witkowski et al., Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide, Science, vol.177, pp.705-706, 1972.

D. G. Streeter, J. T. Witkowski, G. P. Khare, R. W. Sidwell, R. J. Bauer et al., Mechanism of action of 1--D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent, Proc. Natl. Acad. Sci. U.S.A, vol.70, pp.1174-1178, 1973.

R. Suzuki, L. De-borba, C. N. Duarte-dos-santos, and P. W. Mason, Construction of an infectious cDNA clone for a Brazilian prototype strain of dengue virus type 1: characterization of a temperature-sensitive mutation in NS1, Virology, vol.362, pp.374-383, 2007.

R. Takhampunya, S. Ubol, H. S. Houng, C. E. Cameron, and R. Padmanabhan, Inhibition of dengue virus replication by mycophenolic acid and ribavirin, J. Gen. Virol, vol.87, pp.1947-1952, 2006.

M. Tilgner, T. S. Deas, and P. Y. Shi, The flavivirus-conserved penta-nucleotide in the 3' stem-loop of the West Nile virus genome requires a specific sequence and structure for RNA synthesis, but not for viral translation, Virology, vol.331, pp.375-386, 2005.

M. Tilgner and P. Y. Shi, Structure and function of the 3' terminal six nucleotides of the west nile virus genome in viral replication, J. Virol, vol.78, pp.8159-8171, 2004.

T. L. Yap, T. Xu, Y. L. Chen, H. Malet, M. P. Egloff et al., Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution, J. Virol, vol.81, pp.4753-4765, 2007.

S. You and R. Padmanabhan, A novel in vitro replication system for Dengue virus. Initiation of RNA synthesis at the 3'-end of exogenous viral RNA templates requires 5'-and 3'-terminal complementary sequence motifs of the viral RNA, J. Biol. Chem, vol.274, pp.33714-33722, 1999.

J. H. Zhang, T. D. Chung, and K. R. Oldenburg, A simple statistical parameter for use in evaluation and validation of high throughput screening assays, J. Biomol. Screen, vol.4, pp.67-73, 1999.

?. .. Research, 28 5.2. The ssRNA(+) Togaviridae (alpha-like) RNA capping pathway, Contents 1. Introduction, vol.22

. .. Acknowledgements, 29 0166-3542/$ -see front matter Ó, 2012.

R. Abraham, G. Rhodes, D. P. Banerjee, and A. K. , The 5 0 terminal structure of the methylated mRNA synthesized in vitro by vesicular stomatitis virus, Cell, vol.5, pp.51-58, 1975.

G. Abraham, D. P. Rhodes, and A. K. Banerjee, Novel initiation of RNA synthesis in vitro by vesicular stomatitis virus, Nature, vol.255, pp.37-40, 1975.

T. Ahola and P. Ahlquist, Putative RNA capping activities encoded by brome mosaic virus: methylation and covalent binding of guanylate by replicase protein 1a, J. Virol, vol.73, pp.10061-10069, 1999.

T. Ahola and L. Kääriäinen, Reaction in alphavirus mRNA capping: formation of a covalent complex of nonstructural protein nsP1 with 7-methyl-GMP, Proc. Nat. Acad. Sci. USA, vol.92, pp.507-511, 1995.

T. Ahola, P. Laakkonen, H. Vihinen, and L. Kääriäinen, Critical residues of Semliki Forest virus RNA capping enzyme involved in methyltransferase and guanylyltransferase-like activities, J. Virol, vol.71, pp.392-397, 1997.

F. Almazan, M. L. Dediego, C. Galan, D. Escors, E. Alvarez et al., Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis, J. Virol, vol.80, pp.10900-10906, 2006.

J. Balzarini, E. De-clercq, P. Serafinowski, E. Dorland, and K. R. Harrap, Synthesis and antiviral activity of some new S-adenosyl-L-homocysteine derivatives, J. Med. Chem, vol.35, pp.4576-4583, 1992.

S. Barik, The structure of the 5 0 terminal cap of the respiratory syncytial virus mRNA, J. General Virol, vol.74, pp.485-490, 1993.

D. Benarroch, M. P. Egloff, L. Mulard, C. Guerreiro, J. L. Romette et al., A structural basis for the inhibition of the NS5 dengue virus mRNA 2 0 -Omethyltransferase domain by ribavirin 5 0 -triphosphate, J. Biol. Chem, vol.279, pp.35638-35643, 2004.

D. Benarroch, B. Selisko, G. A. Locatelli, G. Maga, J. Romette et al., The RNA helicase, nucleotide 5 0 -triphosphatase, and RNA 5 0 -triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core, Virology, vol.328, pp.208-218, 2004.

D. Benarroch, P. Smith, and S. Shuman, Characterization of a trifunctional mimivirus mRNA capping enzyme and crystal structure of the RNA triphosphatase domain, Structure, vol.16, pp.501-512, 1993.

E. Benghiat, P. A. Crooks, R. Goodwin, and F. Rottman, Inhibition of vaccinia RNA guanine 7-methyltransferase by compounds designed as multisubstrate adducts, J. Pharm. Sci, vol.75, pp.142-145, 1986.

I. Bougie and M. Bisaillon, The broad spectrum antiviral nucleoside ribavirin as a substrate for a viral RNA capping enzyme, J. Biol. Chem, vol.279, pp.22124-22130, 2004.

M. Bouloy, S. J. Plotch, and R. M. Krug, Globin mRNAs are primers for the transcription of influenza viral RNA in vitro, Proc. Natl. Acad. Sci. USA, vol.75, pp.4886-4890, 1978.

M. Bouvet, C. Debarnot, I. Imbert, B. Selisko, E. J. Snijder et al., In vitro reconstitution of SARS-coronavirus mRNA cap methylation, Annu. Rev. Biochem, vol.6, pp.617-654, 1982.

A. J. Caton, S. Robertson, A. Changela, C. K. Ho, A. Martins et al., Structure and mechanism of the RNA triphosphatase component of mammalian mRNA capping enzyme, Nucleic Acids Res, vol.8, pp.2575-2586, 1980.

L. Cheng, J. Sun, K. Zhang, Z. Mou, X. Huang et al., Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping, Proc. Nat. Acad. Sci. USA, vol.108, pp.1373-1378, 2011.

O. Cordin, J. Banroques, N. K. Tanner, and P. Linder, The DEAD-box protein family of RNA helicases, Gene, vol.367, pp.17-37, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132162

S. Daffis, K. J. Szretter, J. Schriewer, J. Li, S. Youn et al., 0 -O Methylation of the viral mRNA cap evades host restriction by IFIT family members, Nature, vol.2, pp.452-456, 2010.

D. and J. E. , Transcription units for mRNA production in eukaryotic cells and their DNA viruses, Prog. Nucleic Acid Res. Mol. Biol, vol.22, pp.327-353, 1979.

M. De-la-peña, O. J. Kyrieleis, and S. Cusack, Structural insights into the mechanism and evolution of the vaccinia virus mRNA cap N7 methyltransferase, EMBO J, vol.26, pp.4913-4925, 2007.

E. Decroly, C. Debarnot, F. Ferron, M. Bouvet, B. Coutard et al., Crystal structure and functional analysis of the SARS-coronavirus RNA Cap 2 0 -O-methyltransferase nsp10/nsp16 complex, PLoS Pathog, vol.7, p.1002059, 2011.

E. Decroly, F. Ferron, J. Lescar, and B. Canard, Conventional and unconventional mechanisms for capping viral mRNA, Nat. Rev. Microbiol, vol.10, pp.51-65, 2012.

J. M. Denu and J. E. Dixon, Protein tyrosine phosphatases: mechanisms of catalysis and regulation, Curr. Opin. Chem. Biol, vol.2, pp.633-641, 1998.

F. Ferron, Antiviral Research, vol.96, pp.21-31, 2012.

S. Clxvii-despins, M. Issur, I. Bougie, and M. Bisaillon, Deciphering the molecular basis for nucleotide selection by the West Nile virus RNA helicase, Nucleic Acids Res, vol.38, pp.5493-5506, 2010.

H. Dong, L. Liu, G. Zou, Y. Zhao, Z. Li et al., Structural and functional analyses of a conserved hydrophobic pocket of flavivirus methyltransferase, J. Biol. Chem, vol.285, pp.32586-32595, 2010.

H. Dong, S. Ren, B. Zhang, Y. Zhou, F. Puig-basagoiti et al., West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism, J. Virol, vol.82, pp.4295-4307, 2008.

H. Dong, B. Zhang, and P. Y. Shi, Flavivirus methyltransferase: a novel antiviral target, Antiviral Res, vol.80, pp.1-10, 2008.

D. Edgil, C. Polacek, and E. Harris, Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited, J. Virol, vol.80, pp.2976-2986, 2006.

M. Egloff, E. Decroly, H. Malet, B. Selisko, D. Benarroch et al., Structural and functional analysis of methylation and 5 0 -RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5, J. Mol. Biol, vol.372, pp.723-736, 2007.

M. P. Egloff, D. Benarroch, B. Selisko, J. L. Romette, and B. Canard, An RNA cap (nucleoside-2 0 -O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization, EMBO J, vol.21, pp.2757-2768, 2002.

K. M. Empey, R. S. Peebles, and J. K. Kolls, Pharmacologic advances in the treatment and prevention of respiratory syncytial virus, Clin. Infect. Dis, vol.50, pp.1258-1267, 2010.

W. Filipowicz, Y. Furuichi, J. M. Sierra, S. Muthukrishnan, A. J. Shatkin et al., A protein binding the methylated 5 0 -terminal sequence, m7G pppN, of eukaryotic messenger RNA, Proc. Nat. Acad. Sci. USA, vol.73, pp.1559-1563, 1976.

T. Fujimura and R. Esteban, Cap-snatching mechanism in yeast L-A doublestranded RNA virus, Proc. Nat. Acad. Sci. USA, vol.108, pp.17667-17671, 2011.

U. Garaigorta and F. V. Chisari, Hepatitis C virus blocks interferon effector function by inducing protein kinase R phosphorylation, Cell Host Microbe, vol.6, pp.513-522, 2009.

B. J. Geiss, H. J. Stahla-beek, A. M. Hannah, H. H. Gari, B. R. Henderson et al., A high-throughput screening assay for the identification of flavivirus NS5 capping enzyme GTP-binding inhibitors: implications for antiviral drug development, J. Biomol. Screen, vol.16, pp.852-861, 2011.

M. Gu and C. D. Lima, Processing the message: structural insights into capping and decapping mRNA, Curr. Opin. Struct. Biol, vol.15, pp.99-106, 2005.

L. G. Guidotti and F. V. Chisari, Noncytolytic control of viral infections by the innate and adaptive immune response, Annu. Rev. Immunol, vol.19, pp.65-91, 2001.

K. C. Gupta and P. Roy, Alternate capping mechanisms for transcription of spring viremia of carp virus: evidence for independent mRNA initiation, J. Virol, vol.33, pp.292-303, 1980.

R. He, A. Adonov, M. Traykova-adonova, J. Cao, T. Cutts et al., Potent and selective inhibition of SARS coronavirus replication by aurintricarboxylic acid, Biochem. Biophys. Res. Commun, vol.320, pp.1199-1203, 2004.

C. C. Hsuchen and D. T. Dubin, Di-and trimethylated congeners of 7-methylguanine in Sindbis virus mRNA, Nature, vol.264, pp.190-191, 1976.

M. Issur, S. Despins, I. Bougie, and M. Bisaillon, Nucleotide analogs and molecular modeling studies reveal key interactions involved in substrate recognition by the yeast RNA triphosphatase, Nucleic Acids Res, vol.37, pp.3714-3722, 2009.

M. Issur, B. J. Geiss, I. Bougie, F. Picard-jean, S. Despins et al., The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure, RNA, vol.15, pp.2340-2350, 2009.

M. Issur, F. Picard-jean, and M. Bisaillon, The RNA capping machinery as an antiinfective target, Wiley Interdisciplinary Reviews: RNA, vol.2, pp.184-192, 2011.

Y. Iwai, K. Murakami, Y. Gomi, T. Hashimoto, Y. Asakawa et al., Anti-influenza activity of marchantins, macrocyclic bisbibenzyls contained in liverworts, PLoS ONE, vol.6, pp.311-315, 2002.

S. Koyama, K. J. Ishii, C. Coban, and S. Akira, Innate immune response to viral infection, Cytokine, vol.43, pp.336-341, 2008.

A. Lampio, T. Ahola, E. Darzynkiewicz, J. Stepinski, M. Jankowska-anyszka et al., Guanosine nucleotide analogs as inhibitors of alphavirus mRNA capping enzyme, Antiviral Res, vol.42, pp.35-46, 1999.

K. Lehman, B. Schwer, C. K. Ho, I. Rouzankina, and S. Shuman, A conserved domain of yeast RNA triphosphatase flanking the catalytic core regulates selfassociation and interaction with the guanylyltransferase component of the mRNA capping apparatus, J. Biol. Chem, vol.274, pp.22668-22678, 1999.

J. Lescar, D. Luo, T. Xu, A. Sampath, S. P. Lim et al., Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target, Antiviral Res, vol.80, pp.94-101, 2008.

P. Leyssen, J. Balzarini, E. De-clercq, and J. Neyts, The predominant mechanism by which ribavirin exerts its antiviral activity in vitro against flaviviruses and paramyxoviruses is mediated by inhibition of IMP dehydrogenase, J. Virol, vol.79, pp.1943-1947, 2005.

P. Leyssen, E. De-clercq, and J. Neyts, The anti-yellow fever virus activity of ribavirin is independent of error-prone replication, Mol Pharmacol, vol.69, pp.1461-1467, 2006.

Y. I. Li, Y. J. Chen, Y. H. Hsu, and M. Meng, Characterization of the AdoMetdependent guanylyltransferase activity that is associated with the N terminus of bamboo mosaic virus replicase, J. Virol, vol.75, pp.782-788, 2001.

S. P. Lim, D. Wen, T. L. Yap, C. K. Yan, J. Lescar et al., A scintillation proximity assay for dengue virus NS5 2 0 -O-methyltransferase-kinetic and inhibition analyses, Antiviral Res, vol.80, pp.360-369, 2008.

S. V. Lim, M. B. Rahman, and B. A. Tejo, Structure-based and ligand-based virtual screening of novel methyltransferase inhibitors of the dengue virus, BMC Bioinformatics, vol.12, p.24, 2011.

C. D. Lima, L. K. Wang, and S. Shuman, Structure and mechanism of yeast RNA triphosphatase: an essential component of the mRNA capping apparatus, Cell, vol.99, pp.533-543, 1999.

L. Liu, H. Dong, H. Chen, J. Zhang, H. Ling et al., Flavivirus RNA cap methyltransferase: structure, function, and inhibition, Front. Biol, vol.5, pp.286-303, 2010.

M. Liuzzi, S. W. Mason, M. Cartier, C. Lawetz, R. S. Mccollum et al., Inhibitors of respiratory syncytial virus replication target cotranscriptional mRNA guanylylation by viral RNA-dependent RNA polymerase, J. Virol, vol.79, pp.13105-13115, 2005.

M. C. Livonesi, R. L. De-sousa, S. J. Badra, and L. T. Figueiredo, In vitro and in vivo studies of ribavirin action on Brazilian Orthobunyavirus, Am. J. Trop. Med. Hyg, vol.75, pp.1011-1016, 2006.

A. Lugari, S. Betzi, E. Decroly, E. Bonnaud, A. Hermant et al., Molecular mapping of the RNA Cap 2[prime]-O-methyltransferase activation interface between SARS coronavirus nsp10 and nsp16, J. Biol. Chem, vol.285, pp.33230-33241, 2010.

V. B. Luzhkov, B. Selisko, A. Nordqvist, F. Peyrane, E. Decroly et al., Virtual screening and bioassay study of novel inhibitors for dengue virus mRNA cap, 2007.

, Bioorg. Med. Chem, vol.15, pp.7795-7802

J. Magden, N. Takeda, T. Li, P. Auvinen, T. Ahola et al., Virus-specific mRNA capping enzyme encoded by hepatitis E virus, J. Virol, vol.75, pp.6249-6255, 2001.

L. Malmgaard, Induction and regulation of IFNs during viral infections, J. Interferon Cytokine Res, vol.24, pp.439-454, 2004.

A. Merits, R. Kettunen, K. Makinen, A. Lampio, P. Auvinen et al., Virus-specific capping of tobacco mosaic virus RNA: methylation of GTP prior to formation of covalent complex p126-m7GMP, FEBS Lett, vol.455, pp.45-48, 1999.

M. Milani, E. Mastrangelo, M. Bollati, B. Selisko, E. Decroly et al., Flaviviral methyltransferase/RNA interaction: structural basis for enzyme inhibition, Antiviral Res, vol.83, pp.28-34, 2009.

B. Morin, B. Coutard, M. Lelke, F. Ferron, R. Kerber et al., Unconventional mechanism of mRNA capping by the RNA-dependent RNA polymerase of vesicular stomatitis virus, PLoS Pathog, vol.6, issue.9, pp.85-97, 2007.

T. Ogino and A. K. Banerjee, The HR motif in the RNA-dependent RNA polymerase L protein of Chandipura virus is required for unconventional mRNA-capping activity, J. General Virol, vol.91, pp.1311-1314, 2010.

S. Olschlager, J. Neyts, and S. Gunther, Depletion of GTP pool is not the predominant mechanism by which ribavirin exerts its antiviral effect on Lassa virus, Antiviral Res, vol.91, pp.89-93, 2011.

S. J. Plotch, M. Bouloy, and R. M. Krug, Transfer of 5 0 -terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro, Proc. Natl. Acad. Sci. USA, vol.76, pp.1618-1622, 1979.

M. Podvinec, S. P. Lim, T. Schmidt, M. Scarsi, D. Wen et al., Novel inhibitors of dengue virus methyltransferase: discovery by in vitro-driven virtual screening on a desktop computer grid, J. Med. Chem, vol.53, pp.1483-1495, 2010.

C. S. Pugh, R. T. Borchardt, and H. O. Stone, Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)-methyltransferase, mRNA(nucleoside-2 0 -)-methyltransferase, and viral multiplication, J. Biol. Chem, vol.253, pp.4075-4077, 1978.

D. Ray, A. Shah, M. Tilgner, Y. Guo, Y. Zhao et al., West Nile virus 5 0 -cap structure is formed by sequential guanine N-7 and ribose 2 0 -O methylations by nonstructural protein 5, J. Virol, vol.80, pp.8362-8370, 2006.

J. Reguera, F. Weber, and S. Cusack, Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral capdependent transcription, PLoS Pathog, vol.6, issue.9, p.1001101, 2010.

L. M. Scheidel, R. K. Durbin, and V. Stollar, Sindbis virus mutants resistant to mycophenolic acid and ribavirin, Virology, vol.158, pp.1-7, 1987.

L. M. Scheidel and V. Stollar, Mutations that confer resistance to mycophenolic acid and ribavirin on Sindbis virus map to the nonstructural protein nsP1, Virology, vol.181, pp.490-499, 1991.

U. Schibler and R. P. Perry, The 5 0 -termini of heterogeneous nuclear RNA: a comparison among molecules of different sizes and ages, Nucleic Acids Res, vol.4, pp.4133-4149, 1977.

D. R. Schoenberg and L. E. Maquat, Re-capping the message, Trends Biochem. Sci, vol.34, pp.435-442, 2009.

F. Ferron, Antiviral Research, vol.96, pp.21-31, 2012.

B. Selisko, F. F. Peyrane, B. Canard, K. Alvarez, and E. Decroly, Biochemical characterization of the (nucleoside-2 0 O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides (7Me)GpppAC(n) and GpppAC(n), J. General Virol, vol.91, pp.112-121, 2010.

A. G. Seto, A. J. Zaug, S. G. Sobel, S. L. Wolin, and T. R. Cech, Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle, Nature, vol.401, pp.177-180, 1999.

W. E. Severson, C. S. Schmaljohn, A. Javadian, and C. B. Jonsson, Ribavirin causes error catastrophe during Hantaan virus replication, J. Virol, vol.77, pp.481-488, 2003.

O. K. Sharma and B. B. Goswami, Inhibition of vaccinia mRNA methylation by 2 0 ,5 0 -linked oligo(adenylic acid) triphosphate, Proc. Nat. Acad. Sci. USA, vol.78, pp.2221-2224, 1981.

S. Shuman, Structure, mechanism, and evolution of the mRNA capping apparatus, Prog. Nucleic Acid Res. Mol. Biol, vol.66, pp.1-40, 2001.

S. Shuman, What messenger RNA capping tells us about eukaryotic evolution, Nat. Rev. Mol. Cell Biol, vol.3, pp.619-625, 2002.

J. M. Song, K. H. Lee, and B. L. Seong, Antiviral effect of catechins in green tea on influenza virus, Antiviral Res, vol.68, pp.66-74, 2005.

M. F. Soulière, J. Perreault, and M. Bisaillon, Kinetic and thermodynamic characterization of the RNA guanylyltransferase reaction, Biochemistry, vol.47, pp.3863-3874, 2008.

K. Sudo, Y. Miyazaki, N. Kojima, M. Kobayashi, H. Suzuki et al., YM-53403, a unique anti-respiratory syncytial virus agent with a novel mechanism of action, Antiviral Res, vol.65, pp.125-131, 2005.

G. Sutton, J. M. Grimes, D. I. Stuart, and P. Roy, Bluetongue virus VP4 is an RNAcapping assembly line, Nat. Struct. Mol. Biol, vol.14, pp.449-451, 2007.

T. Takagi, A. K. Walker, C. Sawa, F. Diehn, Y. Takase et al., The Caenorhabditis elegans mRNA 5 0 -capping enzyme. In vitro and in vivo characterization, J. Biol. Chem, vol.278, pp.14174-14184, 2003.

O. Takeuchi and S. Akira, Recognition of viruses by innate immunity, Immunol. Rev, vol.220, pp.214-224, 2007.

E. Thomas, J. J. Feld, Q. Li, Z. Hu, M. W. Fried et al., Ribavirin potentiates interferon action by augmenting interferon-stimulated gene induction in hepatitis C virus cell culture models, Hepatology, vol.53, pp.32-41, 2011.

J. Tomassini, H. Selnick, M. E. Davies, M. E. Armstrong, J. Baldwin et al., Additional methylation at the N(2)-position of the cap of 26S Semliki Forest virus late mRNA and initiation of translation, Antimicrob. Agents Chemother, vol.38, pp.61-66, 1986.

L. Vasiljeva, A. Merits, P. Auvinen, and L. Kääriäinen, Identification of a novel function of the alphavirus capping apparatus. RNA 5 0 -triphosphatase activity of Nsp2, J. Biol. Chem, vol.275, pp.17281-17287, 2000.

R. Vasquez-del-carpio, F. D. Gonzalez-nilo, G. Riadi, Z. F. Taraporewala, and J. T. Patton, Histidine triad-like motif of the rotavirus NSP2 octamer mediates both RTPase and NTPase activities, J. Mol. Biol, vol.362, pp.539-554, 2006.

F. Vigant and B. Lee, Hendra and nipah infection: pathology, models and potential therapies, Infect. Disord. Drug Targets, vol.11, pp.315-336, 2011.

C. Wilkins and M. Gale, Recognition of viruses by cytoplasmic sensors, Curr. Opin. Immunol, vol.22, pp.41-47, 2010.

S. Zhou, R. Liu, B. M. Baroudy, B. A. Malcolm, and G. R. Reyes, The effect of ribavirin and IMPDH inhibitors on hepatitis C virus subgenomic replicon RNA, Virology, vol.310, pp.333-342, 2003.

Y. Zhou, D. Ray, Y. Zhao, H. Dong, S. Ren et al., Structure and function of flavivirus NS5 methyltransferase, J. Virol, vol.81, pp.3891-3903, 2007.

R. Züst, L. Cervantes-barragan, M. Habjan, R. Maier, B. W. Neuman et al., Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5, Nat. Immunol, vol.12, pp.137-143, 2011.

F. Ferron, Antiviral Research, vol.96, p.31, 2012.