Matrix-product-state-based band-Lanczos solver for quantum cluster approaches - IMPMC_Théorie quantique des matériaux Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2023

Matrix-product-state-based band-Lanczos solver for quantum cluster approaches

Résumé

We present a matrix-product state (MPS) based band-Lanczos method as solver for quantum cluster methods such as the variational cluster approximation (VCA). While a naïve implementation of MPS as cluster solver would barely improve its range of applicability, we show that our approach makes it possible to treat cluster geometries well beyond the reach of exact diagonalization methods. The key modifications we introduce are a continuous energy truncation combined with a convergence criterion that is more robust against approximation errors introduced by the MPS representation and provides a bound to deviations in the resulting Green's function. The potential of the resulting cluster solver is demonstrated by computing the self-energy functional for the single-band Hubbard model at half filling in the strongly correlated regime, on different cluster geometries. Here, we find that only when treating large cluster sizes, observables can be extrapolated to the thermodynamic limit, which we demonstrate at the example of the staggered magnetization. Treating clusters sizes with up to $6\times 6$ sites we obtain excellent agreement with quantum Monte-Carlo results.
Fichier principal
Vignette du fichier
2310.10799.pdf (1.45 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04397686 , version 1 (16-01-2024)

Identifiants

Citer

Sebastian Paeckel, Thomas Köhler, Salvatore Manmana, Benjamin Lenz. Matrix-product-state-based band-Lanczos solver for quantum cluster approaches. 2023. ⟨hal-04397686⟩
7 Consultations
15 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More