Skip to Main content Skip to Navigation
Journal articles

Absence of residual structure in the intrinsically disordered regulatory protein CP12 in its reduced state

Abstract : The redox switch protein CP12 is a key player of the regulation of the Benson–Calvin cycle. Its oxidation state is controlled by the formation/dissociation of two intramolecular disulphide bridges during the day/night cycle. CP12 was known to be globally intrinsically disordered on a large scale in its reduced state, while being partly ordered in the oxidised state. By combining Nuclear Magnetic Resonance and Small Angle X-ray Scattering experiments, we showed that, contrary to secondary structure or disorder predictions, reduced CP12 is fully disordered, with no transient or local residual structure likely to be precursor of the structures identified in the oxidised active state and/or in the bound state with GAPDH or PRK. These results highlight the diversity of the mechanisms of regulation of conditionally disordered redox switches, and question the stability of oxidised CP12 scaffold.
Document type :
Journal articles
Complete list of metadatas

https://hal-amu.archives-ouvertes.fr/hal-01430932
Contributor : Laure Azzopardi <>
Submitted on : Tuesday, January 10, 2017 - 1:51:46 PM
Last modification on : Wednesday, October 14, 2020 - 3:47:33 AM

Identifiers

Citation

Hélène Launay, Patrick Barré, Carine Puppo, Stéphanie Manneville, Brigitte Gontero, et al.. Absence of residual structure in the intrinsically disordered regulatory protein CP12 in its reduced state. Biochemical and Biophysical Research Communications, Elsevier, 2016, 477 (1), pp.20 - 26. ⟨10.1016/j.bbrc.2016.06.014⟩. ⟨hal-01430932⟩

Share

Metrics

Record views

701