Skip to Main content Skip to Navigation
Journal articles

The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution

Daniel Lang 1 Kristian Ullrich Florent Murat 2 Jörg Fuchs Jerry Jenkins 3 Fabian Haas Carl Li Guillaume Blanc 4 Heidrun Gundlach 5 Michiel van Bel Rabea Meyberg Cristina Vives 6 Jordi Morata Aikaterini Symeonidi 7 Manuel Hiss Wellington Muchero Lee Kamisugi Omar Saleh 8 Eva Decker Nico van Gessel Jane Grimwood 9 Richard Hayes 10 Sean Graham Lee Gunter Daniel Mcdaniel Sebastian N.W. Hoernstein Anders Larsson 11 Fay-Wei Li Pierre-François Perroud Jeremy Phillips Priya Ranjan 12 Daniel Rokshar Carl Rothfels Lucas Schneider Shengqiang Shu Dennis Stevenson Fritz Thümmler Michael Tillich Juan Villarreal Aguilar Thomas Widiez 13 Gane Ka-Shu Wong 14 Ann Wymore Yong Zhang 15 Andreas Zimmer 16 Ralph Quatrano Klaus F.X. Mayer David Goodstein 9 Josep Casacuberta Klaas Vandepoele 17 Ralf Reski 18 Andrew Cuming Gerald Tuskan 12 Florian Maumus 19 Jérôme Salse 2 Jeremy Schmutz 3 Stefan Rensing
Abstract : The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene- and TE-rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono-centric with peaks of a class of Copia elements potentially coinciding with centromeres. Gene body methylation is evident in 5.7% of the protein-coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure-based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant-specific cell growth and tissue organization. The P. patens genome lacks the TE-rich pericentromeric and gene-rich distal regions typical for most flowering plant genomes. More non-seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.
Document type :
Journal articles
Complete list of metadatas
Contributor : Guillaume Blanc <>
Submitted on : Friday, April 6, 2018 - 11:12:55 AM
Last modification on : Tuesday, September 22, 2020 - 3:52:08 AM

Links full text



Daniel Lang, Kristian Ullrich, Florent Murat, Jörg Fuchs, Jerry Jenkins, et al.. The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. Plant Journal, Wiley, 2018, 93 (3), pp.515 - 533. ⟨10.1111/tpj.13801⟩. ⟨hal-01760352⟩



Record views