Skip to Main content Skip to Navigation
New interface
Book sections

Optimal Population Growth as an Endogenous Discounting Problem: The Ramsey Case

Abstract : This paper revisits the optimal population size problem in a continuous time Ramsey setting with costly child rearing and both intergenerational and intertemporal altruism. The social welfare functions considered range from the Millian to the Benthamite. When population growth is endogenized, the associated optimal control problem involves an endogenous effective discount rate depending on past and current population growth rates, which makes preferences intertemporally dependent. We tackle this problem by using an appropriate maximum principle. Then we study the stationary solutions (balanced growth paths) and show the existence of two admissible solutions except in the Millian case. We prove that only one is optimal. Comparative statics and transitional dynamics are numerically derived in the general case.
Document type :
Book sections
Complete list of metadata
Contributor : Elisabeth Lhuillier Connect in order to contact the contributor
Submitted on : Friday, March 29, 2019 - 5:26:34 PM
Last modification on : Thursday, November 4, 2021 - 11:58:07 AM

Links full text




Raouf Boucekkine, Blanca Martínez, J. Ramon Ruiz-Tamarit. Optimal Population Growth as an Endogenous Discounting Problem: The Ramsey Case. Control Systems and Mathematical Methods in Economics, Springer, Cham, pp.321-347, 2018, 978-3-319-75168-9 / 978-3-319-75169-6. ⟨10.1007/978-3-319-75169-6_16⟩. ⟨hal-02084782⟩



Record views