A regularized nonnegative third order tensor decomposition using a Primal-Dual Projected Gradient Algorithm: application to 3D fluorescence spectroscopy

Abstract : This paper investigates the use of Primal-Dual optimization algorithms on multidimensional signal processing problems. The data blocks interpreted in a tensor way can be modeled by means of multi-linear decomposition. Here we will focus on the Canonical Polyadic Decomposition (CPD), and we will present an application to fluorescence spectroscopy using this decomposition. In order to estimate the factors or latent variables involved in these decompositions, it is usual to use criteria optimization algorithms. A classical cost function consists of a measure of the modeling error (fidelity term) to which a regularization term can be added if necessary. Here, we consider one of the most efficient optimization methods, Primal-Dual Projected Gradient. The effectiveness and the robustness of the proposed approach are shown through numerical examples.
Complete list of metadatas

Cited literature [16 references]  Display  Hide  Download

https://hal-amu.archives-ouvertes.fr/hal-01858112
Contributor : Eric Moreau <>
Submitted on : Wednesday, March 20, 2019 - 10:19:48 AM
Last modification on : Friday, August 9, 2019 - 3:18:07 PM
Long-term archiving on : Friday, June 21, 2019 - 1:31:29 PM

File

Modified Paper ICMM.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

K. El Qate, M. El Rhabi, A. Hakim, E. Moreau, Nadège Thirion-Moreau. A regularized nonnegative third order tensor decomposition using a Primal-Dual Projected Gradient Algorithm: application to 3D fluorescence spectroscopy. International Conference on Smart Multimedia, Aug 2018, Toulon, France. ⟨10.1007/978-3-030-04375-9_16⟩. ⟨hal-01858112⟩

Share

Metrics

Record views

140

Files downloads

84