The MIT Bag Model as an infinite mass limit

Abstract : The Dirac operator, acting in three dimensions, is considered. Assuming that a large mass $m>0$ lies outside a smooth and bounded open set $\Omega\subset\R^3$, it is proved that its spectrum is approximated by the one of the Dirac operator on $\Omega$ with the MIT bag boundary condition. The approximation, which is developed up to and error of order $o(1/\sqrt m)$, is carried out by introducing tubular coordinates in a neighborhood of $\partial\Omega$ and analyzing the corresponding one dimensional optimization problems in the normal direction.
Liste complète des métadonnées
Contributeur : Loïc Le Treust <>
Soumis le : mardi 28 août 2018 - 10:12:51
Dernière modification le : lundi 4 mars 2019 - 14:04:22
Document(s) archivé(s) le : jeudi 29 novembre 2018 - 13:14:44


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01863065, version 1
  • ARXIV : 1808.09746


Naiara Arrizabalaga, Loïc Le Treust, Albert Mas, Nicolas Raymond. The MIT Bag Model as an infinite mass limit. 2018. 〈hal-01863065〉



Consultations de la notice


Téléchargements de fichiers