Skip to Main content Skip to Navigation
Journal articles

Exploring Phosphine Electronic Effects on Molybdenum Complexes: A Combined Photoelectron Spectroscopy and Energy Decomposition Analysis Study

Abstract : In organometallic chemistry, and especially in the catalysis area, accessing the finest tuning of a catalytic reaction pathway requires a detailed knowledge of the steric and electronic influence of the ligands bound to the metal center. Usually, the M-L bond between a ligand and a metal is depicted by the Dewar-Chatt-Duncanson model involving two opposite interactions, a σ-donor and a π-acceptor effect of the ligand. The experimental evaluation of these effects is essential and complementary to in-depth theoretical approaches that are able to provide a detailed description of the M-L bond. In this work, we present a study of LMo(CO)5 complexes with L being various tertiary phosphines ligands by means of mass-selected high-resolution photoelectron spectroscopy (PES) performed with synchrotron radiation, DFT and energy decomposition analyses (EDA) combined with the natural orbitals for chemical valence (NOCV) analysis. These methods enable a separated access of the σ-donor and π-acceptor effects of ligands by probing either the electronic configuration of the complex (PES) or the interaction of the ligand with the metal (EDA). Three series of PX3 ligands with various electronic influence are investigated: the strong donating alkyl substituents (PMe3, PEt3 and PiPr3), the intermediate PPhxMe(3-x) (x = 0-3) set and the PPhxPyrl(3-x) set (x = 0-3 with Pyrl being the strong electron withdrawing pyrrolyl group C4H4N). For each complex, their adiabatic and vertical ionization energies (IEs) could be determined with a 0.03 eV precision. Experiment and theory show an excellent agreement, either for the IEs determination or for the electronic effect analysis. The ability to interpret the spectra is shown to depend on the character of the ligand. “Innocent” ligands provide the spectra the most straightforward to analyze whereas the “non-innocent” ligands (which are ionized prior to the metal center) render the analysis more difficult due to an increased number of molecular orbitals in the energy range considered. A very good linear correlation is finally found between the measured adiabatic ionization energies and the interaction energy term obtained by EDA for each of these two types of ligands which opens interesting perspective for the prediction of ligand characters.
Complete list of metadata

Cited literature [96 references]  Display  Hide  Download
Contributor : Hervé Clavier Connect in order to contact the contributor
Submitted on : Monday, November 9, 2020 - 10:51:09 PM
Last modification on : Thursday, March 17, 2022 - 10:08:57 AM
Long-term archiving on: : Wednesday, February 10, 2021 - 8:06:47 PM


Manuscript for HAL.pdf
Files produced by the author(s)




Héloïse Dossmann, David Gatineau, Hervé Clavier, Antony Memboeuf, Denis Lesage, et al.. Exploring Phosphine Electronic Effects on Molybdenum Complexes: A Combined Photoelectron Spectroscopy and Energy Decomposition Analysis Study. Journal of Physical Chemistry A, American Chemical Society, 2020, 124 (42), pp.8753-8765. ⟨10.1021/acs.jpca.0c06746⟩. ⟨hal-02997117v1⟩



Record views


Files downloads